
AD-AI15 611 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/6 9/2
DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F-ETC(U)

U1CLASSIFIED AFIT/GCS/EE/I81D-1

,,imlmhhhmhhln
mhhhlmhhIhhllu
IIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII

sw41

A V 44 .4 F.

2C7.

",,1; 7,

......

AFIT/GCS/EE/ BiD-i 4

Design and Development
of a

Multiprogramming Operating System
for

Sixteen Bit Microprocessors

THESIS

AFIT/GCS/EE/8lD-14 Mitchell S. Ross

Captain USA

QTICSELECT' -01
~JUN 161982

Approved for public release; distribution unlimited.

AFIT/GCS/EE/81D-14

Design and Development

of a

Multiprogramming Operating System

for

Sixteen Bit Microprocessors

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements of the Degree of

Master of SciencecAccession For
NTIS GRA&I

DTIC TAB
Unannounced
Justif icatio.

by By
Distribution/

Mitchell S. Ross, B. S.
Availability Codes

Captain USA Avail and/or
Dist Special

Graduate Computer Systems

December 1981

Approved for public release; distribution unlimited.

This thesis presents a design of an operating system

for the Digital Engineering Laboratory. My desire is to

provide a starting point for follow-on efforts and

implementation. The design is based on 16-bit

microprocessors and the development uses structured analysis

as a software engineering technique. I have intentionly

been broa-J in my approach so that future studies have the

flexibility to adapt this effort to their educational

objectives.

I would like to express my appreciation to Dr. Gary B.

Lamont, who as my research advisor gave me valuable

guidance. I would also like to thank my thesis readers,

Captain Roie Black and Captain Richard Conn, for their

advice and assistance in improving the clarity of this

thesis. In addition, I am grateful to the faculty members

who provide instruction at the Air Force Institute of

Technology and contributed to my education and understanding

of Computer Science.

Finally, I wish to thank my wife, Cheryl, for her

tolerance and encouragement during my graduate studies.

Mitchell S. Ross

Contents

Preface i

List of Figures . vi

List of Tables viii

Abstract *. ix

I. Scope of Project 1

Introduction 1
Historical Perspective 2
Objectives 6
Approach 7
Overview of Thesis 8

II. Design Methodology 10

Introduction 10*1 The Nature of Operatin m 10
Design Objectives 12

Design Approaches]3
Language Considera ns 18
Conclusion 20

III. Functional Requirements 22

Introduction 22
Background 23
"User Friendliness" 25
Command Language 28

Arguments 29
Prompts 31
On-Line Documentation 32
Error Messages 32

Recovery 33
Files System. 34
Application Packages 37
Response or Feedback 38
Storage Size 39
Media . 40
Ease of Implimentation 40
Ease of Learning 41
Conclusion 41

! iii

$I

IV. System Requirements 43

Introduction 43
Hardware Requirements 43

Interrupt Hardware 44
Timer Mechanism 44
Storage Protection Capability 45
Direct Access Secondary Storage. 45

Structured Specification of Software
Requirements 45
Operating System Diagram 48
Files Management 54
Input/Output Management 63

Device Handlers 66
Transfer of Files 69

The Scheduler 70
Memory Management.... 79
Nucleus Requirements 83

Dispatcher Requirements 85
Interprocess Communications 87
Interrupt Handler 89

Summary . 92

V. Operating System Design 94

Introduction. 94
Hardware Design 94
Memory Management Hardware 96
Timer Mechanism 99
Software Design Specification 99

Structure Charts. 100
Transform Centered Design and
Transaction Analysis 101

Interprocess Communications 104
Scheduling Management 105
Input/Output Management 106
Summary .]07

VI. Conclusions and Recommendations 108

Recommendations 0 109

Bibliography . 112

Appendix A: Rationale for Timesharing and
Multiprogramming 117

iv

Appendix B: Man-Machine Interface Issues 127

-Appendix C: Computing System Environments 136

Appendix D: Hardware Configuration 144

Appendix E: Structured Specification 147

Appendix F: Module Structure Charts 252

Vita . 280 -

Iv

Figure Page

1 Evolution of Operating Systems 4

2 THE Operating System Hierarchy 15

3 Hansen's Multiprogramming Nucleus 16

4 Command Language Interface 29

5 UNIX File System Implementation 36

6 Data Flow Diagram Symbols 46

7 Operating System Context Diagram 47

8 Operating System Shell Diagram 49

9Execute System Command 50

10 Execute Control Command 51

11 Execute Help Command. 52

12 Execute User Command* . . 54

13 File Management Context Diagram 55

14 File Management Overview 9.9..9.9 . . 57

15 Execute Open File* 58

16 AllocatFie Siae .pa. 59

17 Execute Link Files 60

18 Create File Descriptor 61

19 Close File* 62

20 Input/Output Management Context Diagram 63

21 Input/Output Management Overview 66

22 Initiate Input/Output Request 67

23 Execute Device Handler 68

24 Schedule Management Context Diagram 9 70

25 Schedule Management Overview . . 0 72

vi

26 Create Process 73

27 Execute Scheduler 74

28 Determine Process Status o 75

29 Determine Running Process 76

30 Enter Processor Queues o . 77

31 Swap Process * * 78

32 Memory Management Context Diagram 79

33 Memory Management Overview . . . 0 81

34 Select Free Area 82

35 Deallocate File Space 83

36 Nucleus Context Diagram o 84J

37 Nucleus overview Diagram . . . o . o 85

38 Dispatch Process o . . . 86

39 Interprocess Communication o 88

40 Lock and Unlock 89

41 Save and Restore CPU State o . . . 90

42 interrupt Handler o o . . . o 91

43 Interaction of Nested Interrupts * 95

45 Memory Addressing and Protection 98

46 Structure Chart Notation . o 100

47 Transform Centered Design . . . o 102

48 Input/Output Data Structure 106

vii

Lis

Table Page

1 UNIX File Access Convention 36

2 Operating System Layers 47

3 Operating System Shell 48

4 File Management 56

5 Input/Output Management 65

6 Scheduling Management 71

7 Memory Management. s09 8 Nucleus Composition 84

viii

rT

A tiniesharing operating system for the Air Force

Institute of Technology Digital Engineering Laboratory was

designed and developed with emphasis on the human interface.

The functionil requirements were developed by a thorough

literature search on the user perceptions of computer

operating systems and the justification for the success of

popular systems such as UNIX, TENEX, and UCSD Pascal.

Structured Analysis was used to produce a structured

specification for the hierarchy of the operating system.

The structured specification includes an operating system

shell which allows a flexible user command structure, a

hierarchical file structure, device independent input/output

management, a scheduler which supports swapping, a general

memory management scheme, and a system nucleus consisting of

process dispatching, interrupt handling and interprocess

communications. Weinberg's methodology, which is based on

Yourdon and Constantine's Transform Analysis and Transaction

Analysis Techniques, was used to develop the software design

which consists of a set of module structure charts. The

module structure charts are supported by data flow diagrams

and a data dictionary.

Because of the depth needed to complete such a project,

this first effort is intended to provide a basis for further

expansion and development. Hence, the design is a broad

overall approach aimed at 16-bit microprocessors and not

detailed sufficiently for full implementation.

ix

Introduction

The purpose of this investigation is to develop a*I multi-user, multiprogramming operating system for the

Digital Engineering Laboratory (DEL) at the Air Force

Institute of Technology's School of Engineering. This

operating system can be based on the architecture of Intel

Corporation's 8086 Microprocessor. Introduced in 1978, the

8086 was one of the first 16-bit high performance

microprocessors.

In some respects, the 8-bit microprocessors have been

strained to perform tasks easily handled by more advanced

architectures. With the advent of a new class of 16-bit

microprocessors, interest is increasing in applying these

machines to more complex computing problems (Ref. 32: 62).

Software for these 16-bit microprocessors has just recently

drawn widespread interest (Ref. 49) . If contemporary

software is to keep pace with more sophisticated

applications such as advanced graphics, access to huge

information banks, and addressing large main memories, then

16-bit operation is the solution. The operating systems for

these new architectures take on a new importance.

The operating system is the view of the computer system

from the user's stand-point. The user "sees" and "talks" to

the computer through the operating system. Its function is

to transform a hardware environment, with a low level of

1

execution, to an abstract machine, with a high level of

execution, t~o interface in terms understandable to the user

(Ref. 5: 10146).

The history of operating systeri developments is

difficult to present since many concepts were introduced

long before they were generally accepted and implemented.

The concepts of virtual storage and paging were demonstrated

in the Atlas system more than a decade before they were

formally documented as an integral part of IBM's main line

i operating system in 1972 (Ref. 44) . The early computer

systems such as ENIAC in 1946 had no operating system at

all. Each operator programmed the computer personnally

using machine code, examining individual storage locations

and loading decks.

As the expense *and speed of computers increased,

executive programs were created to allow several users to

sequence their jobs in a "batch" fashion. This prevented

the computer from sitting idle while jobs were loaded

manually, thus wasting costly computer time. An executive

might also have included input/ouput control services

(IOCS) , run time limits, and system accounting.

In the mid-1960's as CPU speed increased, input/output

caused a severe bottleneck in the system. Multiprogramming

was developed as a technique to improve efficiency by

overlapping input/output operations with CPU processing,

thus keeping the processor and input/output devices well

2

utilized. The basic technique is to have several jobs in

memory at one time. A job executes until an input/output

device is required, then it is suspended and another job is

executed. This technique worked well as long as a good mix

of computation and input/output existed in the jobs. Soon

it was realized that multiprogramming could be forced by

using timed interrrupts to switch from one job to another

(preemptive scheduling). Each job was given a specific

amount of time to run, such as 100ms, at which time it was

interrupted by a timer. The operating system would run a

job until it was interrupted or input/output was required,

then the next job was executed, etc. Appendix A contains a

more detailed examination of multiprogramming and its

efficiency.

Timesharing became common to most large operating

systems and created a new world of interactive terminals in

the early 1970's (Ref. 45). All input and the majority of

the output goes directly to and from the user, thus

eliminating most of the electro-mechanics of card and tape

readers. To minimize response time (an important

requirement for timesharing operating systems) these systems

relied heavily on multiprogramming and preemptive scheduling

techiques. Timesharing is also refered to as "interactive"

or "conversational" computing.

As the number and variety of users increased, it became

evident that "software packages" were required to meet users

needs. These packages were not part of the operating system

1985

XENIX (16-bit)
1980

UCSD Pascal (PDP-11) 1975
CP/M (8080) 1974

UNIX (PDP-7) 1972 Virtual machines
Virtual storage

1970

1968

1966 Information managers
MULTICS (GE 645) and Timesharing
OS/MVT (IBM 360) 1964 Multiprogramming

CTSS (IBM 7094) 1962
Executive systems

1960

1958 Batch processing

1956
Processing job by job

IBM 650 1953
IBM 701 1952

UNIVAC I 1951

ENIAC 1946 No operating systems

Figure 1. Evolution of Operating Systems

but were tools for the user just as the operating system was

a tool to manage system resources. Examples of software

packages are compilers, editors, applications programs,

subroutine libraries, and utilitary routines. Also, the

coming of data processing and large data banks influenced

:I4

the development of file management modules and information

management facilities.

In 1972, Intel Corporation presented the 8008

microprocessor. This was the first commercially available

8-bit microprocessor and its development led to the 8080

8-bit microprosessor which became an industry standard. The

8080 microprocessor is largely responsible for the boom of

computer hobbyists, economical industrial applications, and

the minicomputer explosion. A microprocessor revolution

took place that has yet to subside. A multitude of

applications were discovered and developed due to the

capabilities and availability of the microprocessor.

In 1974, Microcomputer Applications Associates (MAA)

proposed a single user operating system as a companion to

the 8080 microprocessor. CP/M (Control Program for

Microcomputers) was a single user operating system that has

*been widely accepted. It is actually a very general

operating system which becomes a special purpose system when

it is "field-programmed" to match a particular operating

environment. CP/M is now used in over 200,000

installations worldwide in over 3000 different hardware

configurations (Ref. 26: 226).

Bell Laboratories, in 1971, developed UNIX, a powerful

multiuser timesharing system with a vast array of software

utilities which greatly increased productivity (Ref. 43).

The increasing cost of software has made systems such as

UNIX an attractive operating system not only as a

5

productivity tool, but also because of its ease of use,

simplicity, and elegant design. The current thought is that

UNIX or a UNIX-like operating system, such as XENIX, will

become the standard system configuration in the future (Ref.

14: 252) .

So the evolution of computer operating systems has come

from simple, single resource managers to wide-spread

standards such as CP/M and UNIX which allow the user to

communicate in a more "human" way than merely toggling

switches. The standards set by these and other successful

operating systems provide a foundation to build on for the

development of an operating system for the Intel 8086

microprocessor. Existing operating systems such as UNIX

provide a basis for the design and development of this

operating system. Given this historical perspective, the

development of a system using the 8086 microprocessor

architecture would draw on past achievements of system

* implementations and current design methodology.

The objective of this investigation is to develop and

design a multiuser, multiprogramming operating system for a

class of 16-bit microprocessors. The development is to be

based on current design methodology and modern operating

system theory. The design will then be applied to the

capabilities and limitations of the 8086 architecture.

Consideration will be given to the number of intended users,

type of peripheral devices, and efficient utilization of

6

computer resources in the selection of all algorithms. A

foremost consideration will be the ease of use of the system

and user/machinie interaction. As in the development of

UNIX, simplicity will be substituted for efficiency wherever

possible (Pef . 54: 1932).

As with any in-depth study, a thorough literature

search was conducted to gain a working knowledge of

operating systems and current philosophy and methodology of

their design, development, and implementation. Several

successful and well known operating systems were studied to

compare existing systems to the objectives of the system

under design for the 8086 microprocessor.

The design of operating systems has not reached a level

where there is a recognized standard approach to design.

However, an operating system can be viewed as a large

software system and approaches to engineering software

systems are prevalent. These methods will be exercised to

formulate the approach to software design. Chapter Two

covers the design methodology in more detail.

A top down structured approach to the design was

selected because of the amount of software involved. By

using this approach, the system, as viewed by the user, will

be addressed first. This will insure the user requirements

are met and a primary objective of "user friendliness" will

be foremost in design. Each level and modularity within

levels will be developed and interfaced as well. In this

7

-dam

type of design, it is important to clearly define interfaces

between levels to maintain modularity and proper hierarchial

levels.

Since the operating system can be expected to be a

large software effort, structured analysis design techniques

are considered important to the success of the project.

This involves such methods as graphic tools, logic modules,

top down approach to design and implementation, and giving

proper consideration to the user's point of view. This

method produces a more efficient design and implementation

(Ref. 57, 59).

Because the hardware is relatively fixed to the

available 8086 microprocessor configuration in the

laboratory, little emphasis was placed on the study of

hardware design except as it pertained directly to the 8086

architecture. Appendix C briefly covers the hardware

configuration and capabilities.

Overview of Thesis

The organization of the thesis follows the approach

used in developing the operating system. Chapter One

provides a brief insite to the historical importance and

evolution of operating systems. Appendix A provides more

information as to the importance of multiprogramming and

timesharing to software productivity. Chapter Two examines

the possible approaches to operating system design based on

principles used in the past and more current software

engineering techniques.

iI p

&

Chapter Three establishes functional requirements,

concentrating on the man-machine interface. Appendix B

provides additional material on research into the

man-machine interface and how it affects the user's

perception of the machine. It is basically a correlation of

research on the "friendliness" of operating systems.

Chapter Four focuses on the system requirements of the

operating system. Data flow diagrams are used to express

the software requirements and support the narrative.

Appendix D gives a brief description of the hardware system

and its capabilities.

The design is developed in Chapter Five. Structure

charts are constructed from requirements and data flow

diagrams of Chapter Four. Throughout the design, structured

analysis is used to provide a layered approach to the

operating system development.

Finally, in Chaper Six, a summary of the effort is

given and recommendations are made for future development.

9

Introducti-on

Modern computing systems are a complex collection of

coded routines, processors, input/output devices, and data

bases capable of a large amount of interaction. A system of

this complexity cannot be developed and designed without the

use of an adequate design technique. Some method must be

utilized to structure and decompose the system into

understandable components focusing on specific interactions.

The purpose of this chapter is to study the available

design methods for developing operating systems and to

select and develop the techniques to be used for the

operating system under development.

The Nature of Operating Systems

Many fundamental techniques of software engineering

* have come out of the design and development of operating

systems. The reason for this is that the operating system

is ususally the largest and first program developed for a

given computer system. It is also the most logically

complex software effort for any given system. The

complexity is increased by the variety of inputs the

operating system must accept and its exposure to penetration

attempts. It must run continuously despite all efforts to

make it fail. Unlike an applications program, an operating

system cannot quit for diagnostics or abort for error

conditions.

10

The complexity of operating systems is caused by

conditions associated with the sharing of computer resources

and current processes. Three of the most troublesome issues

to consider during design are mutual exclusion, deadlock,

and process syncronization and communication.

Since several processes are executing concurrently, two

processes may attempt to use the same resource at the same

time. Mutual exclusion prohibits more than one process from

using the same resource. This is usually accomplished by

declaring the unsharable resource a "critical section" (Ref.

62: 55).

Deadlock ocurrs when processess are waiting on each

other to satisfy a condition one of the processes must

resolve. This situation, called "circular waiting",, (Ref.

16: 122) means the processes will wait forever. There are

three design approaches identified for dealing with deadlock

(Ref. 7: 46).

Syncronization and communication mechanisms between

processes must be designed into the system because sharing

resources requires coordination of processes in time (Ref.

31: 247). It is important to realize these same mechanisms

may be used for solutions to deadlock and mutual exclusion.

Several authors present different design methods for

sycronization and communication of processes, most notibly

Ref. 8, 16, 31, 51, 54.

Considering these conditions, the operating system

requires a powerful design technique if the system is

11

expected to survive in this type of environment. If the

operating system is slow, inefficient, or fails, then the

applications packages follow suite. The operating system

must be considered as the abstract machine upon which all

other software functions.

FThe function of the operating system is to transform a

hardware environment, with a very low level of execution, to

an abstract machine, with a high level of execution, that

will interface in terms comprehensible to the human user

(Ref. 5). It must also interface with the software "users"

such as compilers, data bases, and applications programs.

Design Obiectiy"

Design objectives will vary considerably from system

to system but there are general objectives that should be

adhered to. One important reason for sharing the use of a

computer is to make efficient use of its resources, and this

- should therefore be a primary objective of the operating

system. However, in the process, the operating system

overhead should not absorb too much of the same resources.

Another objective is reliability. Because of the

number of users on a timesharing system, failure would be

more disastrous than on a dedicated system. Also,

correctness of the software system is crucial. The system

must be predictable to the user even though the user may

make unpredictable demands on the system.

Simplicity of design, implementation and use must be an

issue in the design of an operating system. Without

12

simplicity a complete understanding of the system cannot be.

achieved and thus, complete control cannot be exercised over

the system. To some degree these objectives are

incompatible and it may be more important that they are not

neglected rather than one is accomplished at the expense of

the others. How well the designer is able to fulfil each

objective will determine the success of the operating system

design.

Deign Arop-he

The operating system can be viewed from three

perspectives (Ref. 31: 8-20) . The "process view" reduces

the system to a series of user and system processes. The

"resource view" consists of reducing the system to a network

of processes that require resources. The "hierarchical

view" consists reducing the system to a series of nested

machines where the outer most levels are dependent on the

inner levels for execution.

The view used depends on which concept of the system is

under study. The resource view is most useful when

considering the utilization of system resources. The rate

at which processes require resources and the rate required

to service the process are analogous to random variablesr associated with a queue. The process view is most useful

when considering the facilities provided to the user. Each

process is determined by a procedure and a set of data with

an initial state and a sequence of execution. The

hierarchical view is most useful when dealing with the

13

4A

functional aspects of an operating system. All three are

considered at some point during the development of an

operating system. The hierarchical view is the most useful

to the system designer. In this manner, the designer can

view the system from the user to the hardware for a top-down

perspective and design approach.

Dijkstra was the first to formalize the concept of an

operating system design based on a hierarchic structure

(Ref. 9). His approach forms the operating system

processes into a hierarchy where each level represents a

successively more abstract machine then the preceding level,

as shown in Figure 2. As a process moves up the hierarchy

more resource management tasks are performed. Processes at

one level can assume the availability of resources managed

by processes at lower levels. His design is called the

"THE" operating system and is the classic hierarchical

operating system design.

In Dijkstra's system, level 0 is dedicated to the

processor dispatching primitives and is available to higher

levels. Level 1 virtualizes the memory by providing the

page and segment management algorithms. Levels 0 and 1 can

be referred to as a resident nucleus. Level 2 provides the

virtualization of the operator console. Level 3 includes

all the routines for the management ji the peripheral

devices. The ordinary user processes are at level 4 and the

operator processes at level 5.

The abstract machine presented by the hierarchical

14

Operator Processes LEVEL 5

User Processes LEVEL 4

Input/Output Management LEVEL 3

Console Virtualization LEVEL 2

Memory Virtualization LEVEL 1

CPU Virtualization LEVEL 0

Hardware

Figure 2. THE operating system hierarchy

methodology is attractive to system designers. By isolating

operating system functions on an hierarchical level basis

and establishing well-defined communication between levels,

the complexity of design is considerably reduced. Dijkstra

claims the system can be proven logically correct before

implementation (Ref. 9: 342).

Another methodology, developed by Hansen, uses a

bottom-up approach to design (Ref. 15). His design is

concentrated on a multiprogramming nucleus that is general

15

enough to permit the construction of a variety of operating

systems around the nucleus, as shown in Figure 3. The

nucleus can be extended to new operating systems in an

ordering fashion. Thus, the design is not limited to one

application.

The ideas developed by Dijkstra and Hansen are classic

examples of operating system design. Since their

'I development, other techniques such as structured analysis

(Ref. 57, 59) and its related software tools (i.e.

information hiding, modularity, structured programming, data

flow diagrams) have contributed significantly to operating

system design (Ref. 5).

Hierarchical design, whether top-down like Dijkstra's

approach or bottom-up like Hansen's approach, uses the

general nucleus nucleus

process A Soperating

process B syte

process C

operating process D (D
system

process E

process F

process G

Figure 3. Hansen's multiprogramming nucleus.

16

concepts of partitioning, information hiding, and modularity

to clarify the system at several levels. Each level becomes

A' more refined until a level is reached where the degree of

understanding is sufficient for the design to be easily

understood and implemented.

The structured analysis approach (Ref. 57, 59) is

similar because it uses graphic tools to represent levels of

hierarchy and partitioning. Further, software tools, such

as structured English and data dictionaries, allow a smooth

transition from requirements to design to implementation.

This permits an orderly approach rather than the designer

being overwhelmed with a volume of details.

The approach Shaw suggests (Ref. 51: 107) is not

unlike the structured analysis or hierarchical methods. He

claims the design of operating systems is, however, not a

rigid science. It is part science, part art, part

engineering and part management. The five design steps he

suggests are:

(1) Specify the virtual machine requirements.
(2) Describe the paths of processes through the

system (determine what the system does before
deciding how it does it).

(3) Determine the processes required to perform the
tasks specified by 1 and 2; specify interaction
and data structures.

(4) Specify allocation algorithms and stategies of
the nucleus.

(5) Prove the correctness of the design and predict
its behavior.

Step 5 is probably the most difficult to accomplish.

However, the overall approach has several similarities to

structured analysis.

17

Broyne ('of. f) provides one of the best references

and biblioqrarhi,; on the intersection of operating system

design metbodoloqy nnd soft-ware' engineering techniques.

Several de1si , i:sfle are disctussed ar wel] as more specific

exairples and reseprch r-ources.

Language Considerations

Understandably, language issues are more a part of

implementation than requirements definition or design.

However, experiences with successful systems have indicated

that language choice has a strong impact on the system early

in the design (Ref. 39 and 54).

Many large computer systems spend the majority of their

time executing applications programs. It is usually the

case that these applications programs are written in a

higher order language. However, the software systems that

provide the basic support for these packages (i.e.

compilers, operating systems, etc.) are often coded in

assembly language. When program size or execution speed is

more important than software development efficiency,

assembly language is required. However, when programmer

productivity is required, higher level languages are the

answer even though they are less efficient in speed and

storage requirements than assembly language.

At one time the use of assembly languages could be

justified by expensive hardware and inexpensive software.

Also, there may have been a lack of appropriate languages to

support the programming environment. Today, there are a

number of higher order languages capable of expressing

complex algorithms well and hardware is inexpensive while

the price of software has soared.

Several examples exist of higher order languages being

used where assembly language was once thought to be the best

* alternative. Two of the best known examples are UCSD Pascal

(Ref. 39) and UNIX (Ref. 54) written in Pascal and the C

language, respectively. The authors of UCSD Pascal claimI

Pascal was chosen as the implementation language because of

its "ease and power" of implementation. The authors of UNIX

preferred the use of a higher order language because the

benefits derived far exceeded the costs. An operating

system foundation developed by Intel Corporation called RMX

was written in PLM (Ref. 24). The developers of RMX

compare the use of a higher order language instead of

assembly language to the hardware designer's use of LSI

devices instead of TTL components.

The benefits of writing an operating system in a higher

level language can exceed the cost of storage reqiiirements

and efficiency loss. Two cost benefits are less maintenance

and reduced development time. It seems the best approach to

the operating system is to develop the software in a higher

order language. Then, if necessary, use assembly language

to optimize the required portion of code to gain the speed

and minimize the storage needed.

If portability is an issue, the use of a higher order

language is essential. UNIX and UCSD Pascal have been

19

implemented on numerous architectures with only a small

portion of the system rewrittten (Ref. 23, 39) . Since

assembly level languages are, for the most part, heavily

dependent on the architecture of the machine, portability is

limited to a certain class of processors if the entire

system is coded in assembly level code. A good example of

this is CPM which is limited to 8080 and Z80 type

architectures.

PLM is a high order language which provides access to

the microprocessor hardware. it supports absolute

addressing, interrupt handling, direct port input/output,

and a reentrant attribute for procedures. PLM-86 would be a

good choice to implement the operating system for an 8086

based computer.

Conclusion

It is generally agreed that the operating system is the

most logically complex software developed for a computer

system. Multiprogramming and timesharing capabilities add

considerably more to the complexity. In fact,

multiprogramming introduces all the complexities of

multiprocessing except resolution of race conditions (Ref.

5: 1046). Reentrant coding, deadlock, synchronization,

mutual exclusion, sharing, scheduling and concurrency are

some of the major issues confronting the operating system.

Dealing which each of these is a design issue.

The reseach of Dijkstra, Hansen and others present

tried and tested methods for operating system requirements

20

and design. Because of their work, the complexity of

operating systems has been reduced considerably. However,

it is important to use tneir efforts as paradigms and not as

absolutes for design.

Structured analysis offers several advantages and

similarities to early operating system design. It is based

on a top-down approach utilizing graphic tools to express

data flow and processes. This allows the complexity to be

addressed abstractly at the higher levels. Each level is

then partitioned into more detail until the refinement

reaches a low enough level for easy understanding and

implementation.

A high level language should be used to implement the

design such as PLM. This should ease implementation,

maintenance, debugging, and aid productivity.

Generally, the development should follow contemporary

software engineering techniques. Earlier operating system

designs can be used as paradigms. The entire design is an

iterative process and is not a single vast sweep of design

effort.

21

This chapter will focus on the functional requirements

of the timesharing operating system under development.

Discussion will focus on current operating systems, such as

UNIX, and why they are attractive from a functional

viewpoint. However, the discussion will primarily be

concerned with the man-machine interfaces, human

engineering, and programming productivity. The discussion

revolves around "user-oriented system behavior" or "user

quality". These terms involve system characteristics such

as ease of use, tolerance to user errors, minimum

astonishment behavior, and minimization of error

opportunities by the user. Each of these is important to

the man-computer interface in a productive computer

environment. They refer to how a system should behave to

meet the user's needs and constraints. In German technical

$ literature, "benulzerfreundlichkert" is widely used and

literally translated as "user-friendliness" (Ref. 10: 270).

This is not a subject that can be covered easily. It

is very important, yet little material is available that is

well known and recognized. This may be because there are so

many poor examples available and successful attempts are

publicized too little. Appendix B contains support material

for this chapter and further references for a more detailed

study. Studies are revealed which indicate important

22

qualities for a particular class of users, as well as the

physical characteristics desirable for interactive systems

and appropriate dialogue styles..

Several requirements can be specified for an operating

system to fit a general environment. This aproach, however,

can result in a vague and incomplete picture of a specific

'1operating system. Different user requirements, machine

architectures, cost, applications, and software are among

the considerations affecting the design requirements of an

operating system. The design of an "optimal and perfect"

operating system is impractical because this presumes an

exact knowledge of user needs, preferences, and experience.

IPowever, several systems might be considered "standard"

because of their widespread use and popularity. Their

popularity is a result of their ablity to meet users' needs.

For example, CP/M is widely accepted as a single user

operating system for small computers. As a result, software

packages specifically for CP/M have been successfully

marketed by several commercial vendors. This insures that

each user of a minicomputer system has a "standard" to

depend on with many software packages available (Ref. 61:

ix).

UNIX, the operating system discussed in Chapter One, is

quickly becoming a standard because of its versatility,

adaptability to other hardware, and ease of use. L~ike CP/M,

it also has hundreds of applications packages (Ref. 43).

23

Though CP/M and UNIX may be considered standards, they

were developed for specific purposes. CP/M was developed

specifically for use with the 8080 microprocessor in

conjunction with the new floppy disk drives and 16K of main

memory (Ref. 26: 222). UNIX initially was designed on a

PDP-7 and was specifically meant for programming research.

The fact that they have become industry standards is a

compliment to their design. They did not set out to be

standards but became popular by meeting needs of users and

filling a gap between the user and an often hostile

computing environment. UNIX has become so popular that

"UNIX-like" systems for specific hardware configurations are

being introduced rapidly, i.e. UniFLEX for the Motorola

68000 (Ref. 3: 7), Zeus for the Zilog Z8000 (Ref. 58

:120) , Cromix for the Cromemco minicomputers (Ref. 3: 7) ,

OMNIX for the Z80 (Ref. 3: 7), IDRIS (Ref. 40: 125) and

LSX (Ref. 30: 2087) for the LSI-ll. Two other

transportable systems, Xenix (Ref. 14: 248) and Coherent

(Ref. 3: 8) are intended to work on 16-bit microprocessors.

TENEX, developed in the early 1970's by BBN (Bolt

Beranek and Newman, Inc.), was one of the first operating

systems to incorporate "good human engineering" as a major

design goal (Ref. 2: 136). An executive command language

interpreter provided direct access to a large variety of

commonly used system functions, and control and access to

other subsystems and user programs. Command language forms

were meant to be extremely versatile, adapting to the skill

24

* and experience of the programmer. This creates a very

productive environment for the programmer. The TENEX

command language interpreter, EXEC, was designed with two

primary requirements - ease of use and ease of learning.

Thus, novices to experts can easily work with TENEX because

of its versatile command language.

Another influential system, CTSS (Compatible

Time-Sharing System) , came into use at MIT in 1963. An

interesting point about CTSS is that it influenced

user/machine interface so radically that it was studied for

the development of TENEX (Ref. 2: 136) and MULTICS

k (Multiplexed Information and Computing System) which was a

cooperative effort between MIT, Bell Telephone Laboratories

and General Electric (Pef. 3P) . Even the Popular UNIX

system is considered a modern implementation of CTSS (Ref.

usrThus, a good case can be made for human engineering or

"srfriendliness" as an objective when developing the

requirements of an operating system. Not only does it

increase popularity of the system, but it also increases

software productivity.

The huge success of UNIX is largely attributable to its

ease of use and user interface with the machine. As its

inventor puts it, "Throughout, simplicity has been

substituted for efficiency" (Ref. 54: 1932) . This idea

seems to be a general trend in operating systems. In the

25

past, efficiency has been squeezed out of the processor and

memory, but often at the expense of the programmer's use of

the machine. The Editor-in-Chief of a popular computer

publication expressed the feeling of many software

designers, "I'd buy an operating system any day that takes a

long time to run a given program, but which makes me more

productive by communicating with me in useful ways...the

cost of a line of code is becoming astronomical" (Ref. 35:

6).

Up until the last few years, more opinion then

knowledge has existed about what user-quality is in

interactive systems. A widely accepted definition cannot be

found. User-quality may be defined as a set of system

properties which are relevent to man-computer interaction

from the user point of view according to their sensory,

cognitive and affective structures (Ref. 10: 270).

The user is typically unconcerned with the technical

details of how services are programmed or produced, except

perhaps when they fail to meet user requirements. Users are

interested in the level of service delivered at the

terminal, not the internal operation of delivery. However,

knowledge of what constitutes good service presumes an

understanding of user needs. The question is, what does the

user need?

Users perceive the quality of interactive computer

systems from different viewpoints. User-quality depends on

the needs, preferences, problems and past experience of

26

users and can vary widely. It follows then that there can

be no single measure of system quality. Therefore, "the"

user-oriented system does not exist. For a group of users

or for one user some system properties will be selected over

others and some system characteristics will be judged

undesirable by other users (see Apendex B).

When developing an interactive system, a frequent

question involves the allocation of tasks to the computer

and man. Usually, the question is resolved by allowing the

computer to perform anything it can do better than the user.

Assuming the current level of computer intelligence, this is

a reasonable approach (Ref. 46: 852). But, the future may

see computers performing the human role and taking over real

life information processing tasks. What tasks are left for

the human if the computer is allocated these tasks? It may

be that the computer assumes all routine duties and humans

are free for other more creative endeavors.

For many jobs, however, the computer may not be able to

accurately simulate the human processor. The user will

retain these tasks and the man-machine interface will always

remain. If the total man-computer performance is to be

maintained, the role filled by the user must be coherent

with the computer. in future designs of man-computer

interfaces, a strong attempt should be made to assume the

user has a meaningful role and a friendly environment.

V 27

£QDU .a d.. Jan ll .c

The user Z!cCC.:s to a compulter .ystem and its various

facilities .s, in -1.most 11]. cases, via a system command

language. Probably no other feature is more important in

decihing the iivlividu1a.'s effectiveness in using the system

than this aspect (Ref. 34: 512).

The command language structure may be thought of as a

generalized finite state automaton where each state

transition is associated with a condition and a response

(Ref. 6: 362). The automaton can be represented by a state

transition graph. For the environment to be controllable,

the user must be capable of freely moving around in the

graph. The user must be able to select a command and abort

it when required. However, when an abort is selected, care

should be taken when deciding to what state control should

return. It is important that the user feel in control of

the system and have adequate knowledge of the system to make

control possible. As a minimum, it should be known where

the user is, where the user has been, and where the user can

go (Ref. 11: 344).

Contemporary computer scientists agree that computer

systems should be more natural to use. The problem is, what

is meant by "natural"? Fitter (Ref.]i) argues that while

some users prefer computers to use plain English dialogue,

it would be more desirable to issue instructions in computer

language to humans. The point is, plain English is full of

ambiguity and is unfit when precision is required. For the

28

HUMAN IMPLICIT

COMMAND RESPONSE

COMMAND
LANGUAGE - EXPLICIT

COMPUTER - FIXED

Figure 4. Command Language Interface

purpose of man-computer communication, a natural language is

one that makes explicit, as indicated in figure 2, the

knowledge and processes for which the human and computer

share a commmon understanding (Ref. 11: 340).

It becomes the responsibility of the systems designer

to provide a language structure which will make apparent to

the user the procedures on which it is based and will not

lead him to expect unrealistic powers of inference from the

computer. It is required from the beginning to recognize

the fact that a good command language will require complex

programming. A reluctance to accept the overhead involved

is one of the main factors contributing to the lack of good

command languages available today (Ref. 25: 316).

A command language must allow unambiguous specification

29

of what the user wishes accomplished. The information or

arguments to be acted upon and the action to be performed

must be specified. These can be specified by a number of

methods (Ref. 56: 359). Arguments may be given explicitly,

default values, implied by context, or abbreviated in an

agreed form.

An argument specifies various options or alternatives

for realizing the particular command. If a user does not

specify certain arguments, the command language may

automatically assign default values. For example:

SAVE FILE1 DISK PROTECTED
(COMMAND) (ARGUMENTS)

specifies that FILEI will be SAVEd. DISK will be the

storage device and it is to be PROTECTED from other users.

The default values may have been to store the file on tape

and leave the file unprotected.

One alternative is to prompt the user with regard to

missing arguments. However, the selection may become time

consuming and complicated depending on the command and types

of arguments involved. An attractive alternative is to

assign default values automatically to missing arguments.

This is one of the more powerful existing computer system

concepts for achieving a user-oriented environment.

Fssentially, the use of defaults constitutes an agreement

between user and the computer as to what a normal working

value is for each default. Problems may still arise if the

default values are unknown to the user or if the values are

not easily changed. One solution may be for the computer

30

system to cp otnal]y di ;Fley defauvt valu~es.

There, arc general]y two methods for arguments to be

formatted with coimmands. Positional format requires

information to Ie in a fixed or absolute position within the

string of argtmirnts. Veyworrd forma't allows arguments to be

given as a string permutation of special words indicating

the argument type as well as its value. The positional

format imposes the additional burden on the user of

remembering positions. The keyword format is more

user-oriented and studies show the positional format

produces greater error rates (Ref. 34: 513).

As mentioned earlier prompts may be used to cue the

user when arguments are deleted from commands. In

situations where it is undesirable to assign default values,

the user should be prompted with some brief characters to

indicate what is expected next and perhaps displaying the

alternatives available for specifying or selecting the

required information. Prompts may also be useful to act as

cues in complex command chains to avoid confusion and

prevent the chain of commands from becoming a maze. Above

all, prompts should serve as a positive reinforcement that

the computer is responding as required or expected - the

equivalent of a human nod.

Some users consider it desirable to be able to select

more or less terse prompts. More experienced users should

be able to turn the prompts off if desired. However,

31

beginners have indicated that prompts are useful and usually

desire prompts to be an obvious English mnemonic (Ref. 56:

363).

An interactive system should have the capability of

providing help to a user when needed. Granted, on-line

documentation is no substitute for written system

documentation, but the middle of an interactive session is

no place to study system manuals. Occasions may arise

during on-line sessions when it is questionable what the

system wants or what options are available.

A "help" facility can add flexibility to the system by

allowing the novice or casual user the confidence and same

capability as the more experienced user. A simple reply,

such as a "?", to the computer should provide sufficient

information for the user to continue the computing session.

However, verbose messages should be avoided if possible.

One method of on-line documentation is to provide the

user with a hierarchical classification tree which is

traversed by selection of key words from menus. This is not

an unreasonable approach and it may save the interactive

user from digging in hard-copy manuals but at the same time,

it can be time-consuming and digging in hard-copy may be the

better alternative until the user is more experienced on the

system.

The text of error messages is important and should be

32

16

as specifi.c zar I-ossible to the problem. However, lengthly

or vcrbose mer, ,jo are best avoided for the experienced

user who has made a nimple error. It is a good policy to

have a facility to supress long error messages if desired.

A main therte throughout the command language facilities is

to adjust the flow of interaction to the ability of the

user.

Recovery is the reinstatement of some past state of the

computer system, usually after an error or system

malfunction. There is little literature on the specfic

procedures to take when recovery is necessary, but Miller

(Ref. 34) presents four types of recovery situations with

respect to the interactive user:

(1) user correction of data input
(2) user deletion of issued commands
(3) abort or abnormal exit from a program
(4) system crash

With respect to (1), most systems allow local editing

or correction before transmission to the computer. This

presents little or no problem.

rn situation (2), a more complex procedure is involved

depending on the command that has been issued. For example,

if the wrong file has been inadvertently deleted the system

may provide back-up copies of deleted files and recovery is

achieved by the user requesting his back-up copy.

Obviously, not all issued commands can be recovered with no

loss. Nevertheless, the novice who is afraid of issuing

33

commands may find this beneficia.. It helps ease the stress

of issuing commands if it is known some may be withdrawn.

Tn situations (1) and (2) it is important to point out

that it was up to the user to detect errors and initiate

recovery action. However, situations (3) and (4) originate

with the actions of the system. Tn both situations it is

desirable to inform users with regard to what happened, why

it happened, and how to recover.

Situation (3) typically occurs because the program

controlling the user session has been asked to perform some

illegal procedure and no error routine is available to test

or handle that particular circumstance. Usually the user is

given no more than a "job aborted" message. Preferably, the

supervisory system will provide information on where the

error occurred, what rule was violated, and what can be done

to recover and continue processing.

There is usually little that can be done in situatirn

(4) . System crashes are abrupt, unscheduled terminations of

system operation. It would be desirable to shift full

responsibility for system crashes to the system itself by

providing a separately configured and powered processor and

media system. Following the recovery procedure, the system

could automatically recreate the earlier system state,

however, this could become quite extravagant.

Eile.. D1yst~er

Users ususally create a large number of text and

program files. Operations on these files are numerous and

34

include merges, bard-copy outputs, editing, manipulations to

other peripheral devices, and execution. Simple, direct,

and consistent means should be provided for accomplishing

all of these operations independent of the nature of the

file, its structure or size. Also, the methods should be

consistent throughout the system.

The file system is very visible to the user and its

effectiveness contributes a great deal to the friendliness

of the operating system. As a minimum the file system may:

(1) Allow creation and deletion of files.
(2) Perform automatic management of secondary memory

space. The user should not have to be concerned
with location of his file in secondary memory.

(3) Protect user files against system failures.
Unless convinced of system reliability, user
will be hesitant to use the file system.

(4) Allow reading and writing to files.
(5) Use symbolic names to reference files. Users

should not be required to keep track of physical
locations of files.

(6) Users should be able to share files among
cooperating users and protect files as desired.

As an example of what has made UNIX so popular,

consider the file system used by UNIX. Tt is a tree

structure originating from a root directory, thus, a

recursive structure (Ref. J4: 256). Names of files and

subdirectories are contained in the root. Subdirectories

contain names of other files and additional subdirectories,

etc. A user is assigned a unique subdirectory when logging

on a; the current working directory. Full path names for

files consist of a possibly null sequence of subdirectories

separated by a slash beginning with either the root or a

current working directory, and followed by the file name as

35

IDISK PTR TAPE *DIR2 B C D

FILE: DIRECTORY:

Figure 5. UNIX File System Implementation

Table 1. UNIX File Access Convention

From user start point * (DIR2):

File can be accessed by: alternative:

UNIX ../../UNIX /UJNIX
PTR ../../DEV/PTR /DEV/PTR
C .0/C /DIR1/C
E E /DIR1/DIR2/E
K DIR3/K /DIRI/DIR2/DIR3/K

36

indicated in figure 3. (Ref. 4). Table I contains commands

for fi]es and directories in the file system. Fy

convention, the file in each subdirectory called ".." refers

to the parent. directory. Therefore, the user has a concept

of local and global files neatly organized into directory

groupings.

Applications packages and utilities are normally not

part of the operating system and it is not intended to make

them part of this design effort. However, an operating

system, besides performing services for tasks as they

execute, should provide the facilities to assist system

users in the design and testing of new software.

Applications packages can make a significant impact on user

productivity. Operating systems are often characterized by

the applications programs they provide. These facilities

may include editors, debuggers, performance measurement,

diagnostics, language translators, program loading,

libraries, and input/output facilities (Ref. 62: 38).

If frequency of usage is intended to measure the

importance of facilities, editing appears to be the most

important facility provided by the computer system. An

analysis was done on the interactive commands issued to a

IBM TSS/360 which found that 75% of the commands were for

editing. Programmers issued approximately 50% editing

commands and users involved in text documents issued 80%

editing commands (Ref. 34: 514).

37

Editors should have the ability to change, insert, and

delete character strings. However, a well-designed editor

should also be able to establish fields and move from field

to field (perhaps via tab controls), have special commands

for moving groups of lines from one position to another,

provide a scheme for numbering lines, and string search

facilities. One approach to editing, which is very

user-oriented is the screen oriented editor which uses

function keys to manipulate the input text or program.

This is usually reserved for text editors only but program

editors could also benefit from the screen oriented

approach.

The computer should respond quickly or if that is not

possible, the user should be provided with some feedback

that the program or activity is operating. Tf the user's

input causes a move through different states in the machine,

the user should be informed immediately of the new state

entered. Systems which allow the user to think one activity

is being performed when the system is actually doing

something else are extremely frustrating (Ref. 11: 345).

Although an immediate response is obviously desirable,

there can be technical difficulties in producing one. Tn a

multi-user system the problem is dependent on many factors.

Overloading is a function of the user population and can be

controlled more easily as the users become homogeneous and

well defined. Complex scheduling algorithms may be required

38

to guarantor t Qrpon!e times amrionq fluctuating user

charactori rti cs.

Gaines and Facey (Ref. 13: P-95) found that even under

ideal circum'tarlces, it is difficult to estimate response

times even for the zero-computation interactive user. Also,

varying response times without apparent cause were

frustrating to the user. However, it is also pointed out

that the response the user expects is related to the task

requested. The interactive user may expect an immediate

response or feedback after a simple command but the user is

also willing to accept a longer wait period if a complex

computation from the system was requested (Ref. 33).

Storage Size

Storage requirements are dependent on a number of

factors. The number of users, size of user programs,

application packages, and efficient memory management will

all have a bearing on the storage needed.

Generally, the operating system should be required to

manage a hierarchy of memory. Slower menory devices such as

disks can be treated as input/output devices with sufficient

storage capacity for each user. Faster direct access memory

is more limited and more strictly managed by the operating

system. A balance should be achieved between user needs,

the number of users and what is available.

The operating system itself can be expected to utilize

a significant portion of memory. For example, the UNIX

system kernel occupies about 90K (Ref. 42: 1907) and

39

XENIX-8086 memory needs are about 82K (Ref. 27: 51)

Media 9;mD

To facilitate flexibility and speed for retrieval and

storage, media devices are required which allow rapid access

to information. Space should be available in reasonable

quantity and at a reasonable cost so the user does not feel

restricted in what or how information is stored. This may

ultimatly require a hierarchy of media, including removable

media such as floppy disks. Irregardless of the type of

media, the system should support variable types and numbers

of devices without effecting system performance drastically.

The operating system should create the abstraction of a

virtual device. Given the proper device handlers to

interface with the operating system, a variety of media is

possible.

Security and privacy capabilities of media is also

important. Media should be sharable when necessary. Yet,

provisions should exist to allow access only to the author

when desired.

Implementation was briefly discussed in Chapter Two.

To be implemented a system must be easily understood and

well-designed. Ease of implementation is required if a

system is ever to be realized. Otherwise, the most

innovative ideas and proficient design is of little value.

Weinburg supports a top-down implementation (Ref. 57:

40

216) aE do Vojrdon and Constantine (Pef. 59). Their

approach ercouraqes the use of graphic methods, i.e. data

flow diagran-s ard structure charts as development and design

tools. Such graphic methods provide a modular picture of

the entire system. The apportionment of the system can be

visualized and implementation phases are more easily

identified.

Usually, systems easily implemented using the above

approach are also easily modified. A well designed system

will need few modifications. However, as needs and users

change, modifications may be desirable.

The language aspects of implementation were discussed

in Chapter Two. An appropriate high order language can ease

implementation considerably.

Throughout this chapter, user oriented topics such as

command language, files management, system response, and

system "friendliness" have been stressed. Hopefully, the

end result is a system that is easy for the user to

communicate and work with. The prime funtional requirement,

ease of use, is a must for a high degree of productivity in

an interactive system. For the novice, ease of learning is

equally important and should remain a dominant theme

throughout the design.

Much of the above discussion may present itself as

41

obvious requirements. Even though this may be the case, it

remains a fact that few interactive computing systems score

high when measured against some of these requirements. It

has been suggested that this is because human factors such

as "user-friendliness" are considered too late in the design

process and are only considered an embellishment to the

system (Ref. 11: 346).

42

IV. esi i remnts

This cb-ptet aCddresses the system requirements

necessary for the operating system under development. The

functional requirements of Chapter Three will be translated

into more specific system specifications. The first area

will address the hardware requirements for a timesharing

operating system. The software requirements are approached

using methods discussed in Chapter Two, primarily structured

analysis techniques as given by Weinberg (Ref. 57). The

application of structured analysis is briefly discussed and

its use is justified. The software requirements are

developed from the user level, to the file management level,

to the input/output manager, to the process scheduler, to

the memory manager level, and finally to the nucleus.

The following hardware requiremnents are based on

several factors. First, any multiprogramming system which

provides timesharing requires a specific type of hardware

environment to operate in. Second, the functional

requirements of Chapter Three imply certain hardware

facilities to function as intended. Those same requirements

may introduce constraints on the hardware. Further

constraints are possibly imposed by the existing hardware or

eliminated by state-of-the-art techniques.

A3

While the hardware requirements reflect the desired

hardware configuration, any shortcomings in the actual

hardware must be addressed in software. in other words, if

the hardware capability does not exist on the implementation

* computer, the requirement must be met with software.

4 Interrupts generally arrive at unpredictable rates and

times with several interrupt events occurring

simultaneously. Process switching, input/output devices,

timers, and errors all create interrupts within the system.

Both hardware and software priorities on interrupts are

required because of the importance to the operating systemn

of processes waiting for interrupt signals for awakening and

because of the existence of timing constraints between an

interrupt causing event and its processing. Preferably, a

set of hardware priorities for a broad class of interrupts

plus the ability to enable and disable interrupts permits

the system to dynamically establish precedence relationships

among interrupt causing events. Upon an interrupt

occurance, the hardware should save the state of the CPU,

determine the interrupt source, and initiate the appropriate

routine to handle the interrupt.

A timer must be available that is programmable and can

produce interrupts at regular intervals to control

timesharing. The timer is particularly important to

multiprogramming and preemptive scheduling techniques.

A4

I t s iior t at. to have hardware facilities for

protecticn of n.ir: nerlory. Protection should be sufficient

to protect processes from malicious or errat-ic invasion of

other procesr'es. This is applicable to both system and user

processes.

System flexibility is increased by providing fast

storage for library routines and system programs.

Peripheral devices are kept busy by providing auxilary

storage of input/output. User files must be stored in an

orderly fashion on readily available media.

Structured Analysis is a top down, philosophical

approach to each phase of the systems development life

cycle, utilizing graphic tools and a structured methodology

(Ref. 57: 320). Several techniques are available to

engineer the software structure of operating systems (Ref.

5). Structured analysis was chosen because of its

advantages over other methods and similarities with the

methods used on successful operating systems as discussed in

Chapter Two.

Tn structured analysis, the top level of the system,

closest to the user, is addressed first in an abstract

manner. Fach succeeding lower level is addressed to refine

the higher levels by partitioning the processes and data

flows. This concept of partitioning allows a complex system

45

'1

DATA DATA

DATA FLO W /FLOW I DATA

SOURCE POCS DESTINATION

DATA BASE

Figure 6. Data Flow Diagram Symbols

to be addressed one level at a time without confusing the

operation with burdensome details.

The graphic tools used to represent the processes and

data flows are indicated in figure 6. Rectangles represent

the source and destination of data for a particular level.

Circles represent the process involved and an arrow is an

indication of data flow to and from the processes. Data

bases are shown by straight lines. A data element is a data

flow which cannot be partitioned further. Each data flow

and process is partitioned from the user level to a low

level representing data elements and low level processes.

At this point the data flows, data bases and processes are

defined and recorded in a dictionary.

The approach to structuring a hierarchical system will

create layers which provide a set of functions dependent

only on the layers within. Each layer can be regarded as

implementing a virtual machine to the layers above. The

final layer represents the virtual machine the user sees.

A6

L oma. =Hiln llll1 r .. ""' 1

Tab] e 2

Qpperasit in _q --jep. p.ypyr

(perating System Shell
File Management

Input/Output Management
Scheduling Management

iemory flanagement
System Nucleus

As indicated by figure 7, the operating system must

provide all interaction between the user input and the user

output. The interaction will include action by the other

layers in the operating system invisible to the user. The

operating system includes all layers as well as the hardware

interfaces required to implement the functional requirements

of the system. A "boot" process is necessary to initiate

the system configuration.

IUSER SYSTEM

INPUT OPERATIN
DEVICE SYSTEM

CONFIGURATION DATA

SYSTEM
SU1PERVISOR

Figure 7. Operating System Context Diagram

47

Table 3

(Figure 8)

1. Determine Command Type

2. Execute System Command (Figure 9)
2.1 Verify Authorization
2.2 Provide System Menu
2.3 Configure System

3. Determine Command

4. Execute Control Command (Figure 10)
4.1 Determine Control Command
4.2 Log-In rUser

* 4.3 Log-Out User
A.4 Execute inquiry Command

5. Execute Help Command (Figure 11)
5.1 Determine Help Required5. rvd omn nomto
5.2 Provide Costmmn Information

6. Execute User Command (Figure 12)
6.1 Determine Command Conditions
6.2 Prompt User
6.3 Execute Command File

7. Respond to User

Oprtn Ytig_

The data flow diagram in Figure 8 indicates the

software requirements for the operating system. Input

commands must be tested (1) to determine the type,.1supervisor or user. Supervisor commands are reserved for

the operating system supervisor and execute (2) processes

which alter the configuration of the system, peripheral

device parameter, or users eligible to use the system. If

the command is determined to be a user command, three

further possiblities cause another determination to be made

(3). The user command may be a control command (4) which

48

COMMAND COMMAND
DETER141NE

COMMAND
TYPE

USER 3 ON USER

COMMAND DETERMINE I COMMAND [EXECUTE '

/ HELP

SRESSIONE CROSPOUSE HELP E

I RESPONSE

Figure 8. Operating System Shell Diagram

requires special attention by the system. Examples of

control commands are log-in, log-out, or special system

inquiry commands. A help command (5) will provide the user

with assistance in determining the next possible action or

49

SYSTEM COMMAND ILLEGAL COMMAND

AUTHORIZED COMMAND

AU~THORI ZATION

CONFIGURINDT

Figur 9. Eecute SYSTEMomn

comad Hl pciddwildeen n h ues.tte i

the ~ Fiur 9.Eectystem Commands o te oeaig sse 6 r

executed in a manner characteristic of each command. Since

commands may require different parameters and arguments,

each command is dependent on special circumstances and is

treated as a general case here. Finally, each request by

the user requires a response by the system (7) . The system

must keep the user informed of the user status as often as

necessary.

System commands are commands reserved for the system

50

USER LIST

CONTROL USER LOGIN PROMPT
CO.iMAtJJ) LOG-IN 4.2

cOr;NtIAN i

A.1 USER DESCRIPTORS
DE TFR1 IN F"--

,CONTFOLCOMMAND 4.3_ _// LOG-OUT -- "

LOG-OUT USER LOG-OUT MESSAGECOMMAND

INQUIRY EXECUTE INQUIRY RESPONSECOMMAND INQUIRY

SYSTEM DATA

Figure 10. Execute Control Command

supervisor. In order to use a system command, the user's

authority must be established by the system (2.1). Once

authorization is given, the system provides a menu (2.2) of

characteristics which may be altered to suit user needs.

Commands are selected from the menu, issued to the system,

and written out (2.3) to the data base used to configure the

system.

Control commands are used to request special

information from the system, enter or exit the system. A

determination (4.1) must be made which of these commands is

being requested. A log-in command (4.2) will cause a check

51

of the configuration data, more specifically, the user list.

If the log-in attempt is legitimate, a user descriptor will

be established. A log-out command will delete the user

descriptor (4.3) and a log-out message is passed to the

user. Pn inquiry command is similar to a help command with

the exception that the user need not be logged-on the system

to successfully execute it. Inquiries are executed (4.4) by

accessing a system file containing general information such

as who is authorized use, the name of the system manager,

and system capabilities.

A help command is classified as a system information

request or a command information request (5.1). A system

information request will access a data base containing

information on the general capabilities, characteristics,

and configuration of the operating system (5.2). A command

SYSTEM INFORMATION

SYSTEM 5.2
INFO REQUES PRVD

SYSTEM SYSTEM INFO
~~INFO -
5.1

DETERMINE
HELP COMMAND HELP

COMMAND DOCUMENTATION

COMMAND
INFO REQUEST 5.3

PROVIDE CMADINFO
COMMAND

INFO

Figure 11. Execute Help Command

52

information r.que rt (5.3) will provide information on

available commarndv and their usage.

There are generally two schools of thought on the issue

on command]l.nguages it, operating systems (Ref. 29: 51).

The first iE that a command language is not part of an

operating systenm bit should be a separate applications

program which runs on the system. The second philosophy is

that the command language is the final interface between the

user and the machine, and is an additional built-in layer of

the operating system. The approach here falls somewhere

between the two arguments. The requirements as given

provide an environment for a flexibile command language but

do not specify commands, arguments, or execution. Thus,

environment is part of the operating system and the command

language is a separate package.

A session command will execute a command to the

operating system. First, the command string is interpreted

(6.1). Special conditions involving the command execution

are examined (6.2). This information is contained in a

command table and includes arguments or special

characteristics peculiar to that command. Special

conditions may include such capabilities as looping a

command several times with different argumcnts. Any

necessary information not provided by the user must be

requested (6.3) to accomplish the command. Finally, the

command is executed given the conditions and arguments

(6.4).

SESSION INERR INTERPRETED !

EXECUTE SYSTEM

COMMAND
ARGUM4ENTS COMMAND TABLE

I C°OMMAND COMMAND U SER
CNIIN REQUIREMENTS

Figure 12. Execute User Command

Files management is concerned with the storage and

retrieval of information by the system in an efficient and

well organized manner. This involves four system

responsibilities (Ref. 28: 337). A record must be

maintained on all information available in the file system.

This will include the name, location, and access rights to

all files. A determination must be made of how information

is stored and who has the right to read, write and access

the files in storage. Some files may be shared and others

must be protected. File space must be allocated to the

users and initial access rights and characteristics.

54

FILE REQUEST FILE DATA
REQU EST-FIL
SOUPCE] DEVCE_.

FFILE CATALOG

Figure 13. File Management Context Diagram

established. Also, deallocation must be accomplished when

the user no longer needs the information.

This process is conceptually simple, yet is very

important with regard to the user-machine interface. It is

also the largest part of many operating systems and requires

the most design and coding effort (Ref. 43: 244).

There are two benefits that motivate file storage. It

is a great convenience to the user to be able to store

information on-line. In a multi-user system it is

impractical to expect the user to operate without on-line

storage when the only input device available is a video

terminal. Second, the sharing of information is desirable

among users. Applications packages can be used by several

programmers and data may be shared between several users.

Storage is in the form of a logical unit, a "file", of

arbitrary size. The file is separated into blocks of fixed

length on the media. The requirement is to map a symbolic

55

Table 4

File_ I-Ia em

(Figure 14)

1. Determine Master Directory

2. Locate User File Directory

3. Execute Open File (Figure 15)
3.1 Determine Mode
3.2 Locate Directory Entry
3.3 Allocate File Space (Figure 16)

3.3.1 Determine Number of Blocks
3.3.2 Identifiy Free Blocks
3.3.3 Connect File Blocks
3.3.4 Establish Access Rights

3.4 Extract Directory Data
3.5 Check Access Rights
3.6 Execute Link File Routine (Figure 17)

3.6.1 Determine User Directory
3.6.2 Link Owner to User File
3.6.3 Link User to Owner File

3.7 Determine Physical File Location
3.8 Create File Descriptor (Figure 18)

3.8.1 Create Local File Block
3.8.2 Test Central File Block
3.8.3 Create Central File Block

4. Execute Close File (Figure 19)
4.1 Delete Local File Descriptor
4.2 Update Central File Block Status
4.3 Delete Central File Block

name to a physical location in secondary storage. A file

catalogue is needed to hold information on the names and

associated locations of files. A master file catalogue

holds the location for each user's files directory.

The master directory must be determined for the user

making the request (1). Since a user may specify another

directory as the master directory, and each of the files can

be directories, this check must be made each time a user

makes a file request. The master directory is fixed for

system file requests. Once the master is determined, the

56

l oca tion of tbic user f ile mi.st be determined (2) .The user

file dircctory contains all the information about a file

that is necessary to fill the file request. The file is

opened (2) by creating a file descriptor for input/output

processing. After the file action is completed, the file is

closed and must be re-opened before it can be read or

written to again.

Opening the file consists primarily of looking up where

the file is stored, on what device, and gathering the

required information for the requested action. The first

CURRENT MASTER DIRECTORY

FILE COMMAND OPEN] FILE

USER DECRIPTORS FILE DESCRIPTORS

Figure 14. File Management Overview

57

FILE COMMAND
DI RECTORY

3.1 OPEN FILE" ERROR
DETERMINE REQUEST ------

DRITRECTOR
ENTRY

DEVIC PARAETER RIGHS33.

EEXECUTE

NE FILES

DEEMN PYIA CRAELINKS

FLEGCLOA FILE APPOVA
LOCATIONLLCAT

FILES

DEECTORT

DIRECTOR

LOGICASFILCACCES
DVCPAAEESRIGHTS 3.6 R

3.73.

LOCATIONCRIPTORIT

Figure 15. Execute Open File

requirement is to determine the mode of the operation (3.1)

i.e. write or read. Next, the filename is located in the

38

directory (.2) and thbe entry is inspected. If the

directory entry is being created, new file space is

allocated (3.3) and the necessary directory information is

updated beforo the file is opened. Required information is

read fr(m thE directory (3.4) such as location, access

rights, and other file paraimeters. The access privileges

are determined by comparing the requesting user's

credentials with the recorded access rights in the file

directory (3.5). Only the owner of the file can change the

access rights. If they do not match the mode requested, the

attempt to open the file will abort. If the request is to

NEW ACCESS RIGHTS

DETERMINE FILIE NAME ESALH

NEW FILE NUMBER AE

NUMBER

BLOCK ADDRESS

STORAGE ERROR IDENTIFY BLOCK ID CONNECT

FILE STORAGE DIRECTORY

Figure 16. Allocate File Storage

59

link one user, file with another, (3.6) the links are

created after access rights are established. The physical

location and device must be determined (3.7) to initiate

input/output. This information is passed to the procedure

which creates the file descriptor (3.8).

Allocating file space requires the correct number of

file blocks to be connected and associated with a specific

filename. The number of blocks must be determined (3.3°])

and identified (3.3.2) in the file storage directory. Once

identified as free, the blocks are connected (3.3.3) and

associated with the specific file. If the file is new, the

access rights must be established (3.3.4) by default or user

USER DESCRIPTORS

LINK APPROVAL DETERMINE

/ 3.6.3
f LINK

USER TO
USEROWE

DIRECTORY
INFO

Ii USER DIRECTORY

!I-INK \OWNER LINK

Figure 17. Execute Link Files

60

specification. The access rights are recorded in the user

file directory.

Shared files must appear in both the owner's directory

and the directory of the user sharing the file. Once access

privileges are verified, the directory of the requester is

determined (3.6.1) and a link is established (3.6.2). A

link is also established in the opposite direction (3.6.3)

for the owner to keep track of the users sharing the file.

If the owner changes access rights or the file is deleted,

the links must be destroyed. Only the owner can change the

access rights to a file.

The file descriptor must be created for all

FILE PARAMETERS CREATE
LOCALFILE LOCAL FILE BLOCK

BLOCK LOCATION ADDRESS
EXI TI 3.CEDSCP.

CENTRAL CREATE CENTRAL

FILE CENTRAL FILE BLOCK

S T A T U SS
T A R T I N G

CENTRAL FILE BLOCK BLOCK

Figure 18. Create File Descriptor

61

input/output actions. The descriptor contains all the

information about the file necessary for data transfers.

The descriptor must consist of two structures. The local

descriptor block is created (3.8.1) each time a process

opens a file and all the local file descriptors for a

particular file must be connected to a central descriptor

which is associated with the appropriate device. A central

file descriptor is created (3.8.3) for each file and is

tested (3.8.2) each time a local file descriptor is created

to determine if a file can be read or written to. If a

central file descriptor is not available, a new one is

4.1

CLOSE FILE DELETE
REQUEST LOCAL FIL

BLOCK

LOCAL FILE BLOCKS

LOCATION OF
CENTRAL FILE BLOCK

4.2_ 4.3

BLOCK

CENTRAL FILE BLOCKS

Figure 19. Close File

62

created. If one is available, its location is made known to

the new local file descriptor. Two file descriptors are

necessary to allow mutual exclusion to be applied to each

data structure separately rather than an entire list of

descriptors.

Closing a file is relatively simple. The local file

descriptor is deleted (4.1) and the central file descriptor

is notified (4.2). If no further processes require the

central file descriptor, then it too is deleted (4.3).

The management of input/output devices is often

difficult because of the variety of devices that must be

handled. The characteristics and mode of operation of each

device can differ drastically. The data may be transferred

in different units such as blocks, records, bytes or words.

The speed may also differ. A storage device may transfer a

million characters a second and a printer may run no faster

than 300 baud. The representation of data varies from one

INPUT t INPUT
OUTPUT I/O REQUEST MANAGE I/O DATA OUTPUT
SOURCE IDEVICE

DEVICE QUEUE

Figure 20. Input/Output Management Context Diagram

63

: i

media to another. The type of operations also vary, such as

outputing to a printer, inputing from a disk and rewinding a

tape.

Ideally, the matter would be simplified considerably if

all devices could be handled uniformly. Many operating

systems achieve this by creating the abstraction of a

virtual device. UCSD Pascal refers to input/output devices

3 ~as "volumes" (Ref. 34) and MULTICS uses "files" (Ref. 33).

*1 The input/output manager must support device and code

A independence for all devices. It should be unnecessary for

a user to be required to know the character codes for the

devices he wants to use. Further, the system should be able

to accomplish input/output with any device and achieve the

same result. It should not matter whether the output is

,J transferred to a printer or a disk. It is desirable that

input/output should be as device independent as possible.

Input/output devices often degrade performance by

creating a bottleneck in the system. It is desirable to

perform input/output as efficiently as possible and keep

interrupt routines as short as possible.

The characteristics of each device should be associated

with the device itself, not with the operating system

input/output routines that manage them. The device routines

can thus be treated similarly by the system. Special

information needed for the operation of each device can be

obtained from device tables or descriptors and may contain

such information as the status of the device, translation

64

Table 5

(Figure 21)

1. Map Logical to Physical Device

2. Initiate Request (Figure 22)
2.1 Assemble Request Block
2.2 Notify Device Handler
2.3 Add to Device Queue

3. Device Handler (Figure 23)
3.1 Remove Request
3.2 Delete from Queue
3.3 Initiate Input/Output
3.4 Notify Process

tables for the device, the current process using the device,

or instructions to operate the device.

The input/output manager must map the device identifier

to the physical device, check the validity of the parameters

supplied to the device, and initiate the request for

service. This must be a reentrant section to allow several

processes to use it concurrently.

Mapping the device identifier to the physical device is

accomplished by comparing the device parameter with a table

of device descriptors (1) . When the device has been

identified, the parameters can be checked for consistency

(4) with the information available in the device descriptor.

The type of operation, rate of transfer, destination or

origin must be checked. Jnit:iating the request (2) requires

assembling the parameters of the request into a data

structure for the specific device. When the device handler

(3) is notified of a pending request, it will check the

service file.

65

DEVICE DESCRIPTOR TABLE

1/0 REQUESTEQES

DEVIEUREUES

T r.O PHYSICAL REQUEST HANDLER

DEIgu r P nptpTERaN OErEw

DEVICE SERVICE LIST
PYSICAL REQUEST

DEVICE SERVICED
MESSAGE

Figure 2"' Input/Output Management Overview

Initiating the request consists of three processes.

The request parameters must be formed into a block (2.1) to

represent the information needed by the device handler. It

is added to the service file (2.3) for the particular device

which may have many such requests waiting to be serviced.

The device handler is notified of each request (2.2). Each

device handler may have many such requests waiting to be

serviced.

Each device must have its own device handler to deal

with the peculiarities of each particular device. Also,

66

DEVIEICTIC

REUETDEVICE SEVIETIST

Figure K 22HIiiaeInutOtptReus

eah evcehndermut ae tsowBsricOflet

maitan heblck o ifomaio wic rprset2eric

Fntgrres commniciateInpuisOreurdto nouetif h

eadevice handler when av prces isn wariing hist

cmmnation hlcs requiedofmaten procduprethat puserthe

requests bloc dinfetene corepnn device lwthandlte

parikewiae whevthe. oerioncoee, the device handler r

ismiresponsible fore noifyingmethecrepodn.roest

ointdterqtAlinterprocess communication andqirdt otf h

ionterrtio hading rqie pefomd the nceucleu ofa tth

67

DEVICE SERVICE LIST

BLOCK BLOCK ID

.3.

F r 2.3.x

NOTICEA

TRANSNLTIA TRNSE

DATA DATA

TRANSFER COMPLETE

Figure 23. Execute Device Handler

operatini system.

The device handler removes (3.1) a request block from

the data structure maintaining requests and initiates (3.2)

the corresponding input/output operation. This is the most

68

device dependent operation. The device descriptor is

consulted for any information on the device or transfer

charateristics. The data is translated (3.4) , if necessary,

and then transfered (3.5) as indicated by the request block.

The request block is then deleted from the service file

(3.3) . When the operation completes, the device handler is

responsible for notifying the corresponding process that

originated the request (3;6).

The above requirements assume the use of sequential

devices. If this is the case, the name or identifier of theI peripheral device is sufficient information for a given

transfer. However, if random access devices are to be able

to transfer data, a facility must be provided to identify

not only the device but also an area on the device to be

- I transferred. Disks store information in areas ususally

* called files which have an associated unique name. Files

are seldom located sequentially on the disk medium.

The transfer of files is simil~ar to the transfer of

other information with one exception. Additional data1 structures are required to store the information on the

file, its location, and other needed information. This file

descriptor is used in addition to the device descriptor when

an input/output request is made. This will become part of

the parameters which made up the request block.

Devices which support files are referred to as file

devices and are identified differently than the other

69

input/output devices. The user requests the file rather

than the device when desiring a transfer. This creates the

file descriptcr that is used for future tranfers. The file

descriptor must include the device the file is stored on,

the associated device descriptor, and the location of the

file on the device.

The scheduler has three primary duties. First, it must

provide for the introduction of new processes. Second, the

scheduler must assign priorities to determine their order of

execution. The dispatcher selects the highest priority to

run but has no input as to the priority. This minimizes the

overhead of the dispatcher. Finally, the scheduler must

implement the system allocation policies to maintain a

system balance. No system resource should be over-committed

or under-committed. The objective of the scheduler is to

insure all processes obtain the system resources they need

in a "reasonable" amount of time.

It is evident that the performance of the system is

largely dependent on the scheduler and its policies. The

scheduler should, therefore, have a high priority in the

JOB JOB DATA MAAG PROCESS PROCESS

SOURCE POESDATA
STRUCTURE

Figure 24. Schedule Management Context Diagram

70

Table 6

(Figure 25)

1. Create Process (Figure 26)
1.1 Determine Process Image
1.2 Initialize Process
1.3 Assign Priority
1.4 Schedule New Process

2. Execute Scheduler (Figure 27)
2.1 Determine Process Status (Figure 28)

2.1.] Determine Process Status
2.1.2 Change Status to Runnable
2.1.3 Change Status to Unrunnable
2.].4 Change Status to Running
2.].5 Request Queue Action

2.2 Determine Running Process (Figure 29)
2.2.] Determine Queue Priority
2.2.2 Determine Process Status
2.2.3 Determine Location

2.3 Enter Process Queues (Figure 30)
2.3.1 Select Queue Action
2.3.2 Delete from Queue
2.3.3 Determine Queue
2.3.4 Add to Wait Queue
2.3.5 Add to Ready Queue

3. Execute Memory Swap (Figure 31)
3.1 Determine Memory Available
3.2 Execute Swap-In
3.3 Execute Swap-Out
3.4 Initiate Swap I/O

system compared to other processes. The dispatcher will

then choose the scheduler whenever it is runnable. The

scheduler is runnable on at least four occasions. When a

new process arrives, when a process terminates, when a

process is blocked or unblocked, and when a process is

preempted, the scheduler should become active.

Notice the similarities between the interrupt handler

and the activities of the scheduler. Each will occur at

intervals unpredictable to the system and likely cause

71

2MEMORY

SWAP OUT

REQUEST

PROCESS STRUCTURE
I/O REQUEST

Figure 25. Schedule Management Overview

modifications to system behavior. The differences lie in

the level of each service. The interrupt handler is a low

level action affecting the status of processes and

allocation of the processor. The scheduler is a high level

action affecting the number of processes and their priority.

While interrupts may occur every few milliseconds, a call to

the scheduler may be made only every few seconds.

The three major operations of the scheduler are shown

in figure 25. New processes are created by the scheduler

(1) as they arrive. An attempt is made to enter the new

process into memory and it is passed to the scheduling

procedure to enter the processor queue. Each process must

be prioritized to achieve the desirable system performance.

This requires selecting the most important process (2) in

the system that is runnable or can be made runnable by the

scheduler. Processes may be swapped (3) into and out ok

72

memory by the scheduler as demands change and memory becomes

available.

Creating the process consists of establishing a process

descriptor to contain the environment in which the process

exists. The image of the process (1.1) contains

identification of the process and its originator. Tf the

process is new, all data associated with its running

environment must be initialized (1.2). Priorities are

assigned (1.3) based on some criteria established to

optimize system response. At this point, the priorities are

based on limited data about the process and may be updated

by the scheduler at a later time.

NEW JOB DETERMIN MEMORY REQUESTkPROCESS,
IAEMEMORY BOUNDS

ENVIRONMENT JOB

CTYPE

1.2 ASSIGN

1.4/ SCHEDUL
NEW NEW PROCESS

NEW PROCESS DESCRIPTOR

Figure 26. Create Process

73

212.2 SWAP REQUEST
NEW DETERMINE RUN DETERMIN

PROCESS STATUS PROCESS RU

SWAP OUT
REQUIREMENT

READY QUEUE WAIT QUEUE

CONDITION2.

Figure 27. Execute Scheduler

The scheduling procedure has three primary requirements.

The scheduler must determine the status of processes (2.1)

and update the status when a process changes position in the

processor data structure. A running process must be

selected (2.2) from among the available processes in the

processor data structures. This may involve moving

processes around in the system to get the most important

process running. Finally, the processor data structures

must be manipulated to reflect the status of all processes

in the system (2.3). This involves ordering the processor

queues, determining which process to delete, and which to

add in each queue.

Determining the status of processes requires the

scheduler to be activated when a process is blocked,

74

,Now

PREEMPTED STATUS CHANG
PROCESS RUNNABLE ATUS T

RUNNABLE [\k
PROCESS ID

~2.1.1 RUN NABLE
NEW PROCESS DETERMIN. STATU_

AU T UNRUNNABLE CONDITION

UNUNAL STATUS

Figure 28. Determine Process Status

* unblocked, terminated, preempted, or a new process enters

the system. Process condition must checked to determine if

it is currently in memory (2.1.]). Processes in memory or

preempted processes are changed to a runnable status

(2.J .2). Blocked, terminated or other processes not in

memory are changed to an unrunnalbe status (2.1.3). The

process most eligible to run is changed to running status

(2.1.4) in the ready queue where the dispatcher can allocate

it to the processor. All process changes that require a

move in the processor data structure (2.1.5) are

75

IIORITY STARNSPREADY QUE

PRIORITIES SS

DETERMINEDTRI
QUEUE CTO

PRIORITY

~WAIT QUEUE
;iPRIORITIES VA

~REQUEST:I sVAP-ouT
REQUIREMENT

Figure 29. Determine Running Process

determined by the status conditions of the respective

process.

Determinig the running process is accomplished by

inspecting the processor queues for the highest priority.

Both runnable and unrunnable processes are checked for

priority (2.2.]). The highest priority process is inspected

for status (2.2.2) to determine if it is runnable or can be

made runnable. If runnable, the process is selected to be

the running process and if a swap is necessary the swap-in

is requested (2.2.3).

Entering the processor queues is based on the priority

and status of the processes. A determination must be made

76

2.3UE PROESS.NF

QUUEUE

SELECT T

WAIT QUEUE READY QUEUE

INFO

Figure 3(). Enter Processor Queues

2. .

what action is required on the process and what queue is

affected. (2.3.]) . Processes moving from one queue

structure to another must first be deleted (2.3.2) from the

respective queue and a determination made what queue the

process is to enter (2.3.3) based on status. Priorities for

the wait queue for unrunnable processes (2.3.4) may vary

from the processes entering (2.3.5) the ready queue for

runnable processes.

The major data associated with a process is moved to

and from main memory as needed. Since main memory is

limited, and a process cannot execute unless it is in main

memory, the scheduler must decide when to swap a process

77

SWAP- IN -
REQUESTMEMORY REQUEST

DETERM4INE MEMORY RESPONSE

SWAP APRVA

SwAP-OUT

SWAP-OU INFO

Figure 31. Swap Process

between secondary storage and main memory. When the

scheduler selects a process to run which is not in memory it

requests a swap-in. The swapping procedure determines the

amount of memory needed to swap-in the process (3.1). A

request is made to the memory manager. If enough memory is

availble the swap-in is initiated (3.2) . If main memory is

full, the swap procedure informs the scheduler. The

scheduler must decide what process to swap out to make room

and informs the swap procedure to initiate a swap-out (3.3).

Swapping is accomplished by activating an input/output

request (3.4) with the associated information.

INTAE8EUS

Memory _qjejpji-

For mutiprogramming, it is necessary for more than one

process to have access to the processor. This requires

several independent programs to reside in main memory

simultaneously, so the processor can be switched between

them. The programs must not interfer with each other, must

be removed when terminated, and new programs must be given

access to available memory when required.

IIn a multiprogrammed computer it is impossible for the

user to know where each process is in memory. This means

the exact location of the user process is unknown, it cannot

be written in terms of absolute memory addresses. If the

memory allocated to a process remained fixed during its

entire execution it would be possible to transform symbolic

or relative addresses into absolute addresses at the time

the program was loaded, but this is seldom the case. As

processes run to termination the memory they use becomes

free for other processes. They exist in a dynamic system.

The system must be responsible for transforming the

addresses used by the user into the actual addresses in

SCHEDULER PROCES MANAGE MEMORSS

NEEDS MEMORY DATA

MEMORY RECORD

Figure 32. Memory Management ContextDiagram

79

Table 7

(Figure 33)

1. Determine Need

2. Select Area (Figure 34)
2.] Examine Free Area
2.2 Compare Area with Size
2.3 Update Free Area Table

3. Assign Area

4. Record Bounds of Process

5. Deallocate Memory (Figure 35)
5.1 Match Entry with Process
5.2 Update Memory Table
5.3 Adjust Free Space Table

which the process is physically located.

Memory management involves the administering of primary

memory to processes and data where it can be accessed by the

processor. This generally requires four actions by the

memory manager: the allocation of memory, record keeping

involved with how the memory is allocated, a protection

policy to prevent processes from interfering, and the

deallocation of memory after the process terminates (Ref.

28: 105).

After the memory need is determined, an area is

selected for the process in memory (2). Once an area is

selected the process must be assigned that area (3) by

recording the process, memory size, locations and bounds in

a memory table. The process must also be aware of its own

memory bounds by writing to the process descriptor of the

requesting process (4). When the process terminates the

memory used must be deallocated (5) and the memory table

so

PR CESS NFFEDS

PROCESSATEMEMORY

Figure 33. Memory Management

is updated.

Main memory is partitioned into blocks of memory.

These blocks may be a fixed size or a variable size. Block

size can be static and determined by the system or dynamic

and vary with the size of the need. These are issues

determined in design. The primary difference between these

methods is that a program entering memory may be in a

contiguous memory space or may be divided among several

different noncontiguous blocks. However, in any case, a

list of free memory space must be maintained. When a

process is requesting memory, the free space is examined

81

FREE SPACE TABLE

NO FIT MESSAGE

S Figure 34. Select Free Area

(2.1) for a large enough space, either contiguous or

noncontiguous, depending on the algorithm. Each free spaceI

SIZE

is compared with the size needed (2.2). If a large enough

area cannot be found, a response from the system is

required. Tf a free area is identified, the free space must

be updated (2.3) before the actual assignment is made to the

memory table.

Deallocation simply involves matching a process with an

entry in the memory table (5.1) and updating the

corresponding entry (5.2). The area deallocated is added to

the free area (5.3).

A great deal of overhead can be involved in the

allocation of memory. Usually, the greater the memory

82

IL

MEMORY MAP TABLE

M ATCH \{UPDATE\
ENTPY AND I HE J.ORY

PROCEPSOCESS _ rTABLE _.

PROCESS ID ... , AREA

PARAMETERS FREE SPACE TABLE

Figure 35. Deallocation Memory Space

utilization, the greater the overhead. The price paid for

simplicity is that some memory space will be unused.

Fragmentation is the condition resulting when leftover

sections of memory are too small to fill. allocation requests

(Ref. 51: 69). There are many algorithms for dealing with

fragmentation and memory management. Madnick (Ref. 28)

presents one of the best comparisions between different

$i schemes.

The facilities exist at the center of the system which

interfaces directly with the hardware itself. This is the

most machine dependent part of the system and is the major

interface between the operating system and the machine.

This inner-most layer is commonly referred to as the

83

Io

~~PROCESSSTE

PROCESS STRUCTURES

Figure 36. Nucleus Context Diagram

Table 8

(Figure 37)

1. Dispatch Process (Figure 38)1.1 Test for Current Process
1.2 Update Processor State
1.3 Record Processor State

2. Interprocess Communication (Figure 39 and 40)
2.1 Lock CPU

2.2 Block Process2.3 Awaken Process
2.4 Unlock CPU

3. Execute Interrupt (Figure 41 and 42)
3.1 Save CPU State
3.2 Identify Interrupt Source
3.3 Determine Priority

c3.4 Disable Lower Priorities3.5 Determine Routine Location
3.6 Service Interrupt
3.7 Restore CPU State

"nucleus". The functions of a nucleus vary among designs.

Because it is so hardware dependent, no clear definition

exists for the explicit functions of a nucleus. For this

effort, the nucleus will be required to handle interrupts,

provide the mechanisms for interprocess

84

INTERRUPT ID HANDLE PROCESSITRUTENVIRONMENT

PROCESS STRUCTURES DSAC

3 STATES

Im

Figure 37. Nucleus Overview Diagram

communications, and switch the processor between processes.

The requirements of the dispatcher are to allocate the

processor to the most eligible process. It is called

whenever the currently executing process cannot continue to

run or a change to the system has indicated the processor

should run another process. This may be caused by a status

change of the running process or an error condition.

Actually, these are all interrupt conditions, thus, the

dispatcher must be entered after all interrupts to determine

the best process to allocate the processor to. Granted, the

dispatcher may not need to be consulted after each

interrupt, but in this manner each interrupt is treated

uniformly and the overhead is justified.

The requirements of the dispatcher are relatively

simple. Tt tests the current process on the processor to

85

7AD-AI1S 610 AIR FORCE INST OF TECH WRIGHT-PATTERSON
AF OH SCHOO--ETC F/6 9/2

DESIGN ANOSDEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F-ETC(U)

UNCLASSIFIED AFIT/6C5/EE/SID-lN NL

lmomhhhmmmu
mhhhhhhmmmu

PROCESS STATUS
PRPREE ORSSOR STATES

CPU DESCRIPTORP

/UDTE FO PROCES

PROCESSRUNNABLE PROCESS STATE

Figure 38. Dispatch Process

see if it is the highest priority available (1.1). If so,

the dispatcher will return control to the system as stored

before the interrupt was serviced (1.2). If not, the

dispatcher will save the current system state associated

with the current process (1.3) and retrieve the system state

of the higher priority process. Next, control is

transferred to accomodate the new running process (1.2).

The dispatcher does not determine priorities. It

assumes each process has an assigned priority associated

with it which wa assigned by the scheduler at a higher

level. The dispatcher must have access to the data

structure the processes are stored in. If the processes are

86

stored in a queue fashion and ordered by priority, then the

dispatcher is able to simply select the process from the

front ot the queue. This may or may not be the current

running process.

Since an interrupt may effect the status of a process

in the system, it is a requirement for each interrupt

routine to update the status of the process. The routine

must also place it in the processor queue according to the

proper priority.

TnLt.erX Pv-e9 .onj.PnisPt

Because a number of processes are operating

concurrently in the system, a requirement exists for some

means of communication between processes. This mechanism

must be in the nucleus because all processes must have

access to it. Also, in order for the mechanism to block or

awaken a process it must have immediate access to the

dispatcher and interrupt handler. It is necessary to block

and awaken processes (2.2 and 2.3) for three reasons:

deadlock avoidance, critical sections, and syncronization.

Deadlock is a condition in which processes are waiting

indefinitely for events that will never occur (Ref. 16:

336). A deadlock condition involves the circular waiting of

processes. Each process is waiting on the resource of

another process. Since they are all waiting on another to

resolve the condition, they are all unable to continue.

Hansen (Ref. J6) gives a complete discussion of deadlock

87

PROCESS CONDITIONS

2.2
BLOCK

2.3
AWAKEN

PROCESS STATUS

Figure 39. Interprocess Communication

avoidance as well as a thorough collection of literature

sources.

Mutual exclusion (Ref. 43: 62) is the condition where

certain processes are prevented from executing other

processes. For example, when several processes

asynchronously change the contents of a common data area, it

is necessary to protect the data from simultaneous access

and change by two or more processes. The solution is to

prevent more than one process from entering the "critical

section".

Syncronization is required among processes because

certain processes cannot execute until others have occurred.

Process syncronization introduces the concept of time and

order among processes (Ref. 28: 247).

Depending on the data structure used, blocked processes

may or may not be prioritized. Because processes may be

blocked for a number of reasons it may be desirable to have

different data structures for blocked processes. A

88

first-in-first-out arrangement may be sufficient for some

applications and a prioritized queue for others.

LOCK UNLOCK

CPU

Figure 40. -Lock and Unlock CPU

A lock and unlock procedure (2.1 and 2.4) must be

provided to the interprocess communication mechanism to

prevent more than one process from executing them at the

same time. A process must not be able to lose the processor

while executing interprocess communication. This will

insure the block and awake mechanisms are indivisable

operations.

The interrupt handler is responsible for responding to

all interrupts, both internal and external.

Multiprogramming systems, especially timesharing systems,

depend heavily on interrupt mechanisms for scheduling,

input/output devices and system response to user requests.

The interrupt handler must be able to identify the source of

the interrupt and direct the processor to the correct

routine to service the request. Generally, there are two

categories of interrupts: internal, which are generated by

89

the system; and external, which are generated by peripheral

devices. Their differences in handling are a design issue

and will be discussed at a later point.

Many architectures provide a means for handling

interrupts, their priorities, service routines, and

identification. Because of the response desired in a

timesharing system, and the overhead of handling interrupts,

they are best implemented in hardware. However, any

requirements which cannot be met by the hardware

architecture must be implemented by software routines.

The first action by the interrupt handler is to save

the system state at the time of the interrupt (3.1). After

the interrupt is serviced (3.6) the system will return to

this state (3.7) and continue as it was before the interrupt

occurred. However, if the interrupt caused a condition to

occur which altered the priorities of the system, another

process may be selected to run after the interrupt. After

the interrupt handler has saved the system state,

PROCESSOR

PROCESSOR STACK

Figure 41. Save and Restore CPU State

90

INTERRUPT ID

INTERRU NTL*RRUPT VECTOR TABLE
\SOURCE \

3.3DETERMINE PRIORI

PRIORITY LOCATION

DISABLE MESSAGE

Figure 42. Interrupt Handler

the source of the interrupt must be determined (3.2).

Because several interrupts may occur in a short span of

time, a priority scheme must be organized to determine which

interrupt should be serviced first (3.3). Depending on the

processor architecture, this is most easily done in

hardware. When a high order interrupt is being serviced,

other interrupts may be ignored (3.4) or stored until the

high priority interrupt is complete. High priority

interrupts may yield to higher priority interrupts.

Consideration must be given to the type, importance, and

source of the interrupt when determining priorities. The

91

routines should be identified by mapping the interrupt to an

address from a vector interrupt table (3.5).

Servicing the interrupt (3.6) is dependent on the type

of interrupt involvred. Each interrupt routine will perform

a different task and may have a different effect on the

system. For example, an interrupt to change running

processes will alter the status of processes waiting for

service and save the CPU status of the current process.

* However, it is important to keep the interrupt routines as

short as possible since they must run in supervisor mode and

run with interrupts disabled or partially disabled.

Otherwise, system response may suffer.

It is likely that the occurrance of an interrupt will

alter the state or status of some process. For this reason,

A the interrupt handler must have access to the process

*1 structures. As a result, the current process in the system

may not be the best choice of all processes to run.

*Therefore, the dispatcher must be consulted after an

interrupt occurs and the system is ready to run.

This chapter has addressed the hardware and software

requirements of the timesharing operating system under

development. The specifications have been involved and

detailed in some areas and general in others. The use of

data flow diagrams becomes a lengthly process in a large

software effort such as this. However, the benefits derived

from addressing the system at a hiqh level of abstraction

92

makes the system easier to understand - an important

funtional requirement. Structured analysis provides the

partitioning and mod ularity required for a large system to

be properly designed.

Appendix E provides the explanation of processes, data

bases, and data flows in the form of a data dictionary (Ref.

57: 150) to complete the specification. The data dictionary

defines terms of the data- flow diagrams for the systems

development. The data dictionary and data flows form the

foundation for the design in Chapter Five.

93

V.ThPp..n.

IntrodWStl_9D

Earlier chapters discussed the functional requirements

and transformed them into system requirements by means of a

structured specification. This chapter considers the

structured software specification, hardware constraints, and

background in operating systems to develop a design for the

8086 operating system.

The data flow diagrams from Chapter Four are

transformed into module structure charts using structured

design techniques as given by Weinberg (Ref. 57) . By

distinguishing data from control, a structure chart clearly

indicates switches in the system. A structure chart also

shows major loops and decisions in the system.

Hardware Design

One important hardware requirement is tor interrupt

handling. The 8086 has three types of interrupts:

predefined which are functional within the 8086, user

defined hardware interrupts, and software interrupts (Ref.

41: 8-30).

The CPU support card (see Appendix D) can handle up to

sixty-four interrupt sources by cascading lines on the

support card (Ref. 50: 6) . The support card uses a 8259A

programmable interrupt controller which is specifically

designed for real time applications and controls priorities,

vectoring, and cascading of interrupts (Ref. 21: B-107).

94

PROGRAM

INTERRUPT 2-'
INTERRUPT
ROUTINE

2

INTERRUPT 1I__
INTERRUPT*1 ROUT INE

RETURN

RETURN

PROGRAM

Figure 43. Interaction of Nested Interrupts

Figure 43 shows how interrupts are cascaded to allow

higher priority events precedence. When an interrupt

arrives, the execution program is suspended and the

interrupt is vectored to an interrupt routine. Higher

priority interrupts can execute by overriding lower

interrupts. Tnterrupts are only acknowledged, howver, if

the microprocessor has previously executed an enable

interrupt instruction. This allows some degree of

protection for critical sections of interrupt routines.

95

If an interrupt occurs while servicing a higher

priority interrupt, it is recorded by the 8259A and serviced

after the high priority interrupt. When allowing interrupts

of several priorities to occur and interrupt one another,

care must be taken to store the program registers of the

interrupted process in different locations according to

priority level of the interrupt received.

The 8086 requires each interrupt to have a number

associated with it. The interrupt number indentifies the

vector within the interrupt vector table. The interrupt

number multiplied by four will give the address (absolute

address) of the interrupt entry. Thus, the interrupt

structure allows specification of the memory address for

every interrupt service routine.

The lock and unlock mechanisms to provide

indivisibility for the block and awaken mechanisms are best

implemented by disabling and enabling interrupts. This will

guarantee no process can lose control of block and awaken

because there is no way to interrupt them. This will work

only on a uniprocessor system however.

The addresses of processes are contained in memory

based tables called process descriptors. The processor has

the abliity to access these structures as the processes are

activated. The descriptors contain all information

necessary to describe the process to the system,

particularly, the addressable environment of the process.

96

'c b l OP(. Comput- memory addresses by summing the

contents of a segment. register and an effective memory

address (Ref. 41:3-30). Segment registers are shifted left

four bits and n adc hcr to the effective address to get the

actual addrers. The rcsult is a twenty-bit address, or one

megabyte capability. The 8086 address is composed of two

addresses, the segment address and the effective address

(referred to as the offset address). The segment register

then contains the physical base address of the segment. The

address space can then be viewed as a virtually unlimited

number of segments up to one megabyte. However, the actual

number of segments is limited by size and the physical

addressability. The 8086 has four segment registers for

immediate access to four types of segments without changing

a segment register.

Figure 44 shows the method developed for memory

protection and addressing. The addressable environment of

the process is contained in the process descriptor as a base

address, upper limit of the process, and address with the

segment as an offset register. These values are loaded into

the processor when a new process is activated. The base

value is loaded into the offset register and the desired

process address is loaded into the offset register. A

comparision is made to determine if each address is within

bounds for the process by checking the limit with the offset

register.

The disadvantage of this method is the processor

97

A .,,,,., _ . F l I I I l f I

CHECK PROCESSLII LIMIT

I DESCRIPTOR PROCESS
OFFSET REGISTER OFFSET REGISTER

D E S C R IPTO R PROCESS

BASE REGISTER BASE REGISTER

-- >/ DE S C R I P T OR

IMI

LIMIT +

PROCESS
DESCRIPTOR

k_ PROCESS
DESCRIPTOR

PROCESS
DESCRIPTOR

MAIN MEMORY

Figure 44. Memory Addressing and Protection

overhead of checking each process address. However,

significant protection is the benefit. If additional

overhead can be tolerated, further checks can be made in the

process descriptor for process types, access rights and

layers of access. A further extension of this method can

98

provide a rmrtlcd of virtual memory space (Pef. 32: 64).

The support care han five programmable timers. One is

dedicated to proviclinq baud rates to the serial input/output

ports. The other four are general purpose counters

implemented hy the 9513 system timing controller chip (Ref.

50: 24). The counting of the clocks is software controlled

by programming the 9513. Commands available include ARM to

enable the counter, LOAD to load the counter with the

desired value, and DISARM to disable the counter.

The timing needed for preemptive scheduling can be

provided by enabling the counter when a new process is

dispatched to run. When the process finishes its timeslice,

the counter issues an interrupt. A new process is selected

to run and the counter is loaded with the time quantum and

enabled again. If a process is interrupted by an external

source while running, the counter can be disarmed and

rearmed again when the running process continues if it is

the same process.

sof

The design of the software was accomplished by using

the methods presented by Weinberg (Ref. 57: 134-167) which

is based on the work of Yourdon and Constantine (Ref. 59).

This involves the transformation of the data flow diagrams

developed in Chapter Four to structure charts by means of

transform centered design (Ref. 57: 176) and transaction

99

ALPHA

MODULE ALPHA CALLS MODULE4 BETA. MODULE ALPHA PASSED
I TO BETA. MODULE BETA

FLAG RETURNS J AND FLAG TO MODULE
ALPHA.

4 MODULE ALPHA CALLS MODULE
BETA BASED ON A MAJOR
DECISION AND CALLS GAMMA
BASED ON A MAJOR LOOP.BEAGAM

Figure 45. Structure Chart Notation

analysis (Ref. 57: 182). A structure chart indicates

loops, decisions and switches in the system not indicated by

data flow diagrams. Most of all, structure charts provide

the design reviewer with a document that serves as the focus

of design evaluation provided the modules, interfaces, and

'I functions are rigorously defined in a data dictionary.

Figure 45 indicates the symbols used in a structure

chart. It is understood that the called module returns to

the calling module. The called module may return control or

data information. Control information is indicated by a

solid circle and data information is represented by an open

circle. This representation of the structure chart

100

illustrates two properties. First, the hierarchical modular

structure is clearly indicated and second, the module

function and communication in the structure is cleary shown.

The horizontal placement of module has no particular

influence on the order of execution. This is important to

note because two structures charts can represent the same

data flow and yet physically appear entirely different.

Perhaps the most important function of the structure

chart is that is facilitates change. Since it identifies

input, outputs, processes 'and control very clearly, the

modules affected by a desired change are easily identified.

Thus, just as a data flow diagram indicates the system's

logical design, the structure chart represents the physical

design.

Structure chart symnbology may include reference to

pathological connections when one module references data

defined in another module or when a module does not return

to a calling module. This is unldesirable and should be

avoided if at all possible. Yourdon and Constantine discuss

the treatment of pat.iological situations (Ref. 59:

235-249).

IT.arfnr1Rn- .e1D. I D~Q

Transform centered design is a modular design strategy

that specifies building a system around the data flow

conception. This approach requires a top level module to

call for processed logical input, and lower level modules to

transform physical input into logical input and logical

101

CENTRAL
AFFERENT TRANSFORM EFFERENT

MAINMODULE

Figure 46. Transform Centered Design

output into physical output.

To develop structure charts from data flows using

transform centered design, the major input and output data

streams must be identifed. The input data stream is traced

until it has reached a high abstract level where it is no

longer considered input. This is the afferent branch. The

102

output data stream is traced backward until it can no longer

be considered output. This is the efferent branch. The

remaining portion of the data flow in the middle is the

central transform. This process is called factoring.

Factoring of the afferent branch, efferent branch, and

central transforms is continued until the entire data flow

is transformed to a structure chart. A simplified example

is shown in figure 46.

Transaction analysis is another modular design strategy

that builds a design around the concept of a transaction. A

transaction is any element of data that sets off a sequence

of actions. Data flow diagrams that fan out to do

processing by transaction type strongly suggest transaction

analysis. The resulting structure chart typically

demonstrates a significant degree of fan-in and fan-out

2,(Ref. 57: 185).

Both transaction analysis and trLunsform centered design

can be applied to the same data flow diagram if it

demonstrates the properties of each technique. The

resulting structure chart for this system provides a strong

foundation from which subsequent design revision can be made

judiciously. However, it should be kept in mind that theI derived structure chart is not a final design effort. It is
a first draft of a module design. Weinberg addresses

additional design criteria to be considered such as

cohesion, coupling, scope of effect, scope of control, and

morphology to be considered to identify potential weaknesses

103

in a hierarchical structure (Ref. 57: 187-231).

The complete set of structure charts is located in

Appendix F. Additional data dictionary entries were added

to Appendix E to compensate the added data and processes

derived when constructing the charts. Additional design

decisions and policies are discussed in the following

sections.

The operations block and awaken are developed by using

semaphores (Ref. 8). The choice of semaphores is based on

the widespread use and understanding of semaphore

implementation.

The block operation implies a process is blocked when a

semaphore is zero and freed when an awaken operation

increments the value to one. The easiest method of

implementation is a semaphore queue. When a block operation

is performed on a zero value semaphore, the process is added

to a queue and is made unrunnable. Conversely, when an

awaken operation is performed on a norempty queue, a process

is taken off the queue and made runnable.

Semaphore queues may be organized as first-in-first-out

or prioritized. Different queue organizations may apply to

each resource. The structure of the semaphore must contain

three items, the semaphore integer, the type of queue

organization, and a pointer to the queue.

As discussed earlier, block and awaken must be

indivisible processes. If interrupted during execution

104

their values can easily be mistaken. On a single processor

system, the easiest method of guaranteeing indivisibility is

to disable interrupts. Since the execution of the semaphore

mechanism is very short, interrupts will be disabled for a

very short time.

The scheduler must decide which process gets priority

in the processor queue. Assignment of priority to system

processes is performed by the scheduler based on the

expected response time. For example disk processes have

higher priority than printer processes. However, it has

been observed that system priorities have little impact on

performance (Ref. 54: 1937). The user process priorities

are lower than the lowest system priority. Thus, all system

processes are selected to run before user processes. The

user process is assigned a priority based on the, ratio of

processor time to real time used by the process and updated

each time quantum. UNIX uses a similar ratio but updates

every second.

Since interactive processes are characterized by a low

ratio, interactive response is desirably low. A high

priority process cannot dominate the processor because its

priority will drop as more compute time is accumulated, thus

producing a desirable feedback situation. Likewise, a low

priority process will not be ignored because as real time

increases its priority will rise.

The dispatcher overhead is minimized by selecting the

105

DEVICE

DESCRIPTOR

ID

NEXT DEVICE REQUEST BLOCK
DESCRIPTOR __

STATUS MODE

CHARACTERISTICS ERROR CONDITION

SEMAPHORE DESTINATION
REQUEST PENDING

ORIGINATING
SEMAPHORE PROCESS

OPERATION COMPLETE
SEMAPHORE

DEVICE REQUEST SERVICED
REQUEST QUEUE

NEXT REQUEST
CURRENT PROCESS BLOCK4 ~ ~~~~DESCRI PTOR ________

CURRENT REQUEST
BLOCK

TRANSLATION
TABLES

Figure 47. Input/output Data Structures.

front process in the ready queue. The scheduler performs

all prioritizing and manipulation of the queue to place the

higher priority job up-front.

As mentioned in the requirements for input/output

management, a device handler is responsible for servicing

requests on the queue and notifing the requesting process

when a transfer is complete. Figure 47 indicates the data

106

structure diagram for the device descriptor and associated

request blocks which are dealt with by the device

descriptor.

A separate device descriptor exists for each device.

Request blocks are added as processes request service from

the device. The semaphore, request pending, is signaled by

the procedure each time it puts a request block on the

queue. If the queue is empty the semaphore will be zero.

The semaphore, operation complete, is signaled by the

interrupt routine after an interrupt is generated for the

device.

Concl Bipn
This chapter has developed a concept of design from the

requirements of earlier chapters. The hardware design

concentrates on the interrupt structure, timing mechanisms,

and memory addressing scheme. The techniques specified by

Weinberg were used to transform the data flow diagrams into

module structure charts to yield a software design based on

the structured specification.

107

VI. Conclusions and Recommendations

This investigation has concerned the development of an

operating system based on several objectives. First, an

operating system must be friendly to the user, that is, a

user must be able to communicate his needs easily to the

computer and the computer must respond in a manner explicit

to the user, whether novice or expert. Second, when

deciding between simplicity and efficiency, simplicity

should come out the winner. Third, ease of understanding

should guide the system design and ease of use should guide

the user interface.ITo support user friendliness, detailed functional

requirements of the man-machine interface have been

presented. Existing systems have also been studied to

examine existing user environments.

An attempt has been made to keep the development simple

by using known tools such as semaphores, hierarchical

levels, and common operating system structures. The complex

nature of an operating system makes it difficult to simplify

certain issues and as a result some over simplification may

have resulted.

Ease of understanding is essential in a large software

effort such as this. The structured specification was the

most time-consuming portion of the research and the most

productive as well. The development of the design

progressed easily because a significant amount of

partitioning was completed in the structured specification.

1063

The techniques of structured analysis are highly recommended

for any such effort. Ease of understanding impacts directly

on ease of implementation.

Tn summary, existing operating systems have been

studied., and functional requirements specified for a

productive and friendly user environment. By using

structured analysis techniques, the system requirements were.

specified and module structure charts were developed. The

structured specification, though time consuming, produced an

understandable development of the system requirements.

Certain assumptions were made during this

investigation. Tt was assumed that interrupt routines

existed to drive input/output devices. All other interrupt

routines such as those to handle error conditions and

preemptive scheduling were also assumed. Command routines

were taken for granted. The position was taken that an

environment is provided by the operating system which

flexibly supports command routines. H~owever, the command

itself is part of an applications layer in the operating

system and not an integral part of the system (Ref. 29:

47-55).

Several areas must still he addressed before

implementation can take place. To simplify much of the

design in this stage of development, many of the structured

specifications were not detailed down to the lowest level.

The partitioning of the design must continue before

109

implementation can take place.

Operating system commands must be developed in more

detail. The interrupt rountines that have been assumed must

be designed and interfaced.

No input/output buffering has been specified. If a

process is performing repeated transfers on the same device

it will repeatedly be suspended while the transfers take

place. In order to avoid this overhead, input/output

buffering should be developed.

No provision for spooling is currently designed.

During periods of high demand some input/output devices may

become heavily loaded and the processes may be forced to

* wait for release. Input/output spooling should be developed

4 to spread the load on heavily used devices such as a

printer.

The major advantage of modern timesharing systems is to

provide a workbench, so to speak, for the programmer. To

extend this research to the point where it may be considered

a programmer's workbench the following features would be

necessary:

(1) At least one programming language,
(2) Complete set of commands for running, testing,

and modification of programs,
(3) A run-time interface that may intersect with

the command language,
(4) Provisions for the sharing, maintenance, and

protection of files, to include the ability
to define sharing rights between groups of
users,

(5) Provide unattended operation of any given
program,

(6) The ability to pass arguments between commands,
(7) The capability to form working dialects for a

specialized group of users.

Each of these can develop into a major research effort.

Some provisions have already been made for 4, and several of

the others have been alluded to.

A research effort involving a subject as detailed as

operating system design becomes not only quite deep, but

broad as well. It is suggested that future efforts by

single reseachers be narrow topics. This approach should

allow the depth of study necessary without the distraction

of a wider subject area.

I1i]

Lill

Bibliogrzphy

I. Bard, Y. "Performance Criteria and Measurement of a
Time-Sharing System", IBM Syptes journal, 10: 193-216
(1971).

2. Bobrow, Daniel G. "TENEX, a Paged Time-Sharing System
for the PDP-10," CQmmu~ng_nt pDg ao Athe M, 15: 135-143
(March 1972).

3. Boldyreff, Cornelia. "UNIX on a Mirco," SjgmAaij
1LeJlttgS 7: 7-8 (February 1981).

4. Bourne, S. R. "The UNIX Shell," Bell System Thni01I
9iLwanl 57: 1971-1990 (July-August 1978).

5. Browne, James C. "The Interaction of Operating Systems
and Software Engineering," Proce d Dgs pf the I 68:
1045-1049 (September 1980).

6. Cheriton, D. R. "Man-Machine Interface Design for
Time-Sharing Systems," Proce eding AO Co nfgrnce
362-380 (1976).

7. Coffman, Edward and Peter Denning. Qj.Pe"±_m System
Theory. New Jersey: Prentice-Hall, 1973.

8. Dijkstra, E. W. "Cooperating Sequential Process,"
Prgaing Languages,- Y. Genuys, Editor. New York:
Academic Press, 1968.

9. Dijkstra, E. W. "The Structure of T.H.E.
Multiprogramming System," aommunit of the ACM
11: 341-346 (May 1968).

10. Dzida, W., S. Herda and W. D. Itzfeldt.
"User-Perceived Quality of Interactive Systems," IEEE
TransacigD QDn 5.L twAk e Engineering. 4: 270-276 (July
1978).

11. Fitter, M. "Towards More Natural Interactive Systems,"
International Journal f nahin. studies,, 11:
339-350 (January 1979).

12. Freeman, Peter. SQLw_ aIgS s Pds-iip Chicago:
Science Research Associates, 1975.

13. Gaines, Brian R. and Pater V. Facey. "Some Experience
in Interactive System Development," Proceedings QL .lte
IEEE, 6: 894-911 (June 1975).

14. Greenburg, Robert B. "The UNIX Operating System and
the XENIX Standard Operating Environment," B 6:

112

X

248-264 (June 1981)

15. Hansen, Brinch. "The Nucleus of a Multiprogramming
System," Communicgatpns of the ACM. 13: 238-241 (April
1970).

16. Hansen, Brinch. Ptr Tj'_pes _f QVege!tjng j New
Jersey: Prentice-lall, 1973.

17. Hayes, Phil et al. "Breaking the Man-Machine
Communication Barrier," C 14: 19-27, (March
1981).

18. Hellerman, Herbert and T. F. Conroy. Computer Syste
Pefr DAjCwe_, New York: McGraw Hill, 1975.

19. Hornig, J. J. "Process Structuring," A0M LQmplit.Dg
S y 5: 5-30 (March 1973).

20. Hsiao David K. EycteM_, Pogm-ing = Qnc!ept- of
Oaer atiDZ And Dat s S Reading:
Addison-Wesley, 1975.

21. Intel Corporation. The £Q . Fami y Dla.riL M!anuel,
Santa Clara: Intel Corporation, 1980.

22. Johnson, Jan. "Intellect on Demand," Datanat ,D 27:
73-78 (November 1981).

23. Johnson S. C. and D. M. Ritchie. "Portability of C
Programs and the UNIX System," Bell Sate Tehnical
Journal, 57: 2021-2048 (July-August 1978).

24. Kahn, Kevin C. "A Small-Scale Operating System
Foundation for Microprocessor Applications,"
Proceings 2f jh I , 66: 209-216 (February 1978).

25. Kennedy, T. C. S. "The Design of Interactive
Procedures for Plan-Machine Communication,"
International loPIMA. ! of Ma/Ic hing e S jW ie6& 6:
309-334 (1974).

26. Kindall, Gary. "CP/M: A Family of 8 and 16 bit
Operating Systems," Byte, 6: 216-232 (June 1981).

27. Libes, Sol. "16-Bit Microcomputer Disk Operating

Systems," Mj P9y tgBlj 50-54 (July 1981).

28. Lister, A. M. fun-damtaUx of Operating Stgmg. New
York: Springer-Verlag Inc., 1979.

29. Lorin, H. and H. M. Deitel. QpRUAInQ Sys±.e wr
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1981.

113

30. Lycklama, H. " Unix on a Microprocessor," Bell Sytem
.Tecnii.01 igurnal, 57: 2087-2101 (July-August 1978)

31. Madnick, Stuart E. and John J. Donovan, 2-ra tiDg
Syept _ New York: McGraw-Hill, 1974.

32. Markowitz, R. and W. B. Pohlman. "The Evolution Path
of the 8086 Microprocessor Architecture for Operating
System Environments," Micron gggpgI Iijij _ta ad
IniistxI Systems WorDpm1 _ 62-66. IEEE Computer
Society, February 1980.

33. Martin, J., PS§_tSD of Man-Cm.tpve Dialo ues. New
Jersey: Prentice-Hall, 1973.

34. Miller, L. A. and J. C. Thomas, "Behavioral Issues in
the Use of Interactive Systems," In trffigalk Journal
DI Ran-Ma-cbine Stlud __ 9: 509-536 (March 1977).

35. Morgan, Chris. "The New 16-5it Operating Systems, or,
The Search for Benutzerfreundlichkeit," B yvtC,1 6: 6
(June 1981).

36. Muller, K. G. Sp iCgJ±in Aind Design Qf In9. Aiv
Sytgms. SHAPE Technical Center, The Hague, (June
1980).

37. Norman, Donald A. "The Trouble with UNIX," Datamation,
27: 139-160 (November 1981).

38. Organick, E. I. Th M ultic System: An Examination Df
Ita Structure, Cambridge: The MIT Press, 1972.

39. Overgaard, Mark. "UCSD Pascal: A Portable Software
Environment for Small Computers," Ninal Computex
£gonfexne_, 1980, 49: 747-754, (1980).

40. Plauger, P. J. and M. S. Krieger. "UNIX-like Software
Runs on Mini- and Microcomputers," Electrnic.. 54:
125-129 (March 24, 1981).

41. Rector, Russell and George Alexy. The= B8 Book,
Berkeley: McGraw-Hill, 1980.

42. Ritchie, D. M. and K. Thompson. "The UNIX Time-Sharing
System," The Bell Systg Technica Juzna" 57:
1905-1929 (July-August 1978).

43. Ritchie, D. M. "UNIX Time-Sharing System: A
Retrospective," Bell Syte Ta fhni.CA1 Journal 57:
1947-1969 (July-August 1978).

44. Rosin, S. "Electric Computers: A Historical Survey,"

114

.CAOmpl.UD.q ,.rYeY.&,. 1: 7-36 (March 1969).

45. Rosin, T. F. "Supervisory and Moniter Systems," A0
Compl_ jig ,u.v.s_,, 1: 37-54 (March 1969).

46. Rouse, William B. "Design of Man-Computer Interfaces
for On-Line Interactive Systems," 21jQg.eincW 2f
.IE,, 63: 847-855 (June 1975).

47. Sackman, P. Man-Cop.vtjx Problem Sol1J
"Experimental Evaluation of Time-Sharing and Batch
Processing", New York: Auerbach, 1970.

48. Schorer, Peter. "Structure the Use: Notes on a Methodfor Designing Computing System Environments," Copuex
14: 77-86 (December 1981)

49. Schwabe, J.,M. J. Elmore and D. Miller. "The Impact of
16-Bit Microprocessors on Software Development,"
CmputeT _esign, 20: 111-115 (June 1981).

50. Seattle Computer Products, Inc. "CPU Support Board -
Instruction Manual, Model SCP300F," Revision F,
Seattle: Seattle Computer Products, Inc., 1980.

51. Shaw, Alan C. The LD~qivzl Design gf Oe rating Systemg.
New Jersey: Prentice-Hall, 1974.

52. Sherman, S. et. al. "Trace Driven Modeling and
Analysis of CPU Scheduling in a Multiprogramming
System," Communications f t/le AM 12: 1063-1069
(1972).

53. Tesler, Larry. "The Smalltalk Environment," Be 6:

90-147 (August 1981).

54. Thompsom, K. "UNIX Time-Sharing System: UNIXImplementation," Bell Zy53 e yeghigal Jouna. 57:

1931-1946 (July-August 1978).

55. Watson, Richard W. IiMYzbriD9 System Deign C
New York: McGraw-Hill, 1970.

56. Watson, Richard William. "User Interface Design Issues
for a Large Interactive System," Hatiimal _CDmjtei
Conferen.eie 1976, 45: 357-364 (June 1976).

57. Weinberg, Victor. Struc Ue A y New York:
Yourdon Press, 1979.

58. Weiner, Bruce and Douglas Swartz. "Adapting Unix to a
16-bit Microcomputer," £1ec.Ltrppj,1 54: 120-129 (March
24, 1981).

115

59. Yourdon, Edward and Larry R. Constantine. StructU
D jWn Fundamentals Qf A DisCipl..je uL of mpute
2_rogrq"Ln An-1 Sygate D&jfl Digz. Englewood Cliffs, N. J.:
Prentice Hall, Inc., 1978.

60. Yusko, Robert J. D_ ejqW of . uliJprog rmming
fost Lr the Inteli BDK ki osP/ MS Thesis.

Wright-Patterson AFB, Ohio: School of Engineering, Air
Force Institute of Technology, December 1981.

61. Zaks, Rodnay. 2bR flA&jandbopS With MP/N. Berkeley:
Sybex, Inc., 1980.

62. Zarella, John, Qpe..dng SystemD Concept And
Zi n.ip l. Suisun City, California: Microcomputer
Applications, 1979.

.1

116

Appendix A

Rationale for Timesharing and Multiprogramming

This appendix jus~tifies the usage of timebnaring and

multiprogramming in modern computer systems. These two

techniques are widely used and acceptpd but their

advantages, disadvantages, and complexity are not as readily

understood. Yet, both concepts have pro&3bly contributed

more to the productivity and efficiency of computing than

any other single technique.

Timesharing is the use of a computer system to support

multiple users who view and interact with the system as if

it was a dedicated system. The primary objective of

4 timesharing is to provide fast, convenient, and economical

man-machine interaction to several users (Ref. 18: 235).

Multiprogramming is the technique of concurrent

execution of several programs by enabling the CPU to suspend

the execution of one process to execute another and return

to the suspended process at a later time. The primary

objective of multiprogramming is to maximize the usage of

the system resources while maintaining a good response time

to the user (Ref. 20: 148).

Advantages of Timesharing

Timesharing is an interactive method of computing that

is totally different from batch computer systems. They are

not and should not be thought of as batch systems with

interactive facilities added on. To appreciate this fact

117

the two methods should be compared.

The use of batch facilities and timesharing facilities

can be viewed as computing in the passive and active modes

respectfully. in the passive (batch) mode the user invokes

the support of a computer center and submits his programs to

the personnel, conforming to their requirements to receive

service. The user has to predetermine all the jub steps

that are to be executedand has no access to the computer.

He has no active role in the data processing operations for

his own program. Turnaround time can be lengthly and the

user has no control over it. The processing is totally

off-line and remote from the user's normal working

'A environment.

* However, in the active mode (timesharing) the user has

*immediate access to the data processing system via a

workstation in his normal working environment and he

determines when processing takes place. All input is

processed in his presence. The system interfaces directly

4 with the user's task. In the interactive mode a user can

adapt the algorithms and the workstation to suit the

requirements of a given problem. Therefore, in addition to

being a user of the system he can also be a producer of the

system by creating his.own software products.

It has been suggested to be truely interactive, a

timesharing facility should exhibit tiiree properties (Ref.

36: 24):

(1) Integration of user and computer capabilities

by dialogue with free choice of user input and

118

deterministic response by computer.
(2) User has full control over processing sequence

(proceduralization).
(3) User adapts system to his actual needs by

adaptation of work station and by adaptation
of software (actualization).

The most outstanding characteristic of a timesharing

system may be that its user can adapt it permanently to

actual problem solving situations and approaches. This is

"actualization" (Ref. 36: 5). This may serve to adapt a

system to new user classes. The user may discover that he

can delegate more routine operations to the system, thus

freeing him for more creativity. The user may wish to

extend the system's capabilities so that it can be applied

to new problems.

It should be pointed out that historically, all

computer systems were dealt with interactively. Originally,

computers were run by those who could start and stop them at

will. It was only economics that led to the establishment

of data computer centers and their passive mode of

operation.

The use -m ra i P Axzg

Given the additional overhead and software complexity

of a timesharing system, are the benefits worth the effort?

Most interactive users agree. One study at MIT involved a

number of students in a business class who were required to

provide an optimal solution to a management problem using

computer simulation techniques (Ref. 47). The class was

divided into two groups. One group was to use an available

119

batch system and the other was given use of the timesharing

facility. The computer facility provided information on the

use of resources, the faculty gave its evaluation of the two

groups solutions, and students completed questionaires to

determine performance and user attitudes. The summary of

the major results of the experiment are:

(1) The timesharing group had a lower man/effort
cost, but higher computer cost. However, the
total cost for both groups did not differ
appreciably, even though the costs were dis-
tributed quite differently.

(2) A significantly better solution was achieved by
the timesharing users.

(3) In the batch group, more than twice as many
people did not arrive at a useful solution.

(4) More students prefered the timesharing system.

The conclusion is that timesharing can attribute to a

better problem solution and is prefered by most users when

compared to conventional batch systems. It is also

interesting to note that costs, despite a different

distribution, did not differ significantly between batch and

timesharing use.

EffrwD.S.pL Jk1V_ prDSr.Ol~pxn ir9

The effectiveness of multiprogramming is usually

measured by the amount of concurrent activity in the system

(Ref. 12: 302). If all processes in the active

multiprogramming mix are input/output bound, the processor

is not effectively utilized. Likewise, if all processes are

compute bound, the processor is utilized but not the

input/output devices. The utilization of a specific

resource is the fraction of time that the resource Is busy.

]20

The sum of the utilizations is an indication of the

effectiveness of the multiprogramming. On most systems an

attempt is made to waintain a mix of computation and

input/output processes to balance the load on these

resources. This is usually not feasibile, however, because

the behavior of processes varies during execution.

The effectiveness of mutiprogramming as well as the

responsiveness of timesharing systems depends ultimately on

the performance of the scheduler. The definition of a

scheduler is an algorithm that uniquely specifies which

process is to receive service next by a resource (Ref. 18:
98). The scheduling algorithms must deal with a unknown set

of processes whose behavior may change during execution

(Ref. 12: 302). A system should be designed so that

reasonable service is guaranteed irregardless of user input.

Each process uses a certain amount of CPU time before

becoming blocked, waiting for an input/output request to be

completed. A heuristic often applied to processor

scheduling is to attempt to minimize the time until an

execution interval ends and an input/output request is made.

This can be viewed as an attempt to maintain as many

processes doing input/output as possible. Since the

input/output part of a system usually contains a number of

asynchronous devices, this tends to increase the

effectiveness of multiprogramming. If the execution

interval were known, then a scheduling discipline could be

selected for optimal performance. However, this is not

121

known because it requires knowledge of future performance of

the process. A scheduling technique such as round-robin has

the effect of giving preferential treatment to short service

requests and is particularly effective when the service-time

distribution has a variance much larger than the mean (Ref.

52: 1063).

-.- Pey1ge 5piep

Many programming requirements require a large amount of

input/output activity Since input/output devices are

dreadfully slow compared to CPUs, this encourages the use of

multiprogramming to overlap computer bound processes with

input/output bound processes. The case for multiprogramming

in eed mofe inpt/otput devtce hat not thpae itovmet

insee more atptactve dves ths fnct that the iproven

improvements in CPU speed. For example, disk improvements

in transfer rate, access time, and rotational delay have

bee inthe order of only 1.5 to 2 while the improvement of

the internal processing speed of the CPU has been in the

order of 5 to 10 (Ref. 20: 147).

$ The disparity of the hardware improvement in terms of

the CPUs internal processing speed and the input/output

transfer rate, and the users demand for faster response and

direct access, strongly encourages the use of

multiprogramming. The desired result will be: (1) reduced

CPU wait time on input/ouput operations by running another

process while the input/output process is running and (2)

increased response time by proper scheduling techniques.

122

I.

In some circumstances it is beneficial for the user to

be aware of the system characteristics of his computing
environment. The user may be able to take advantage of

techniques for saving time and space in the system if he is

aware of operating system algorithms and the cost of each

resource before he makes any tradeoffs.

The use- should be aware of whether or not the host

system is multiprogrammed. If not, it is likely the user

has a large main store to work with and space is not a

problem. In this case, a user may feel free to use more

space to save CPU time. For a fixed task, main storage

availability is inversely proportional to the time to

accomplish the task. As more storage is available, the user

system
performance

optimal amount
of memory

fewer processes can
reside in memory

memory size per program

Figure A-1. Multiprogramming Performance vs. Memory Usage

123

can use morc. compJ].ex algorithms to execute the task more

e fficiently.

However, on a mutltiiprogrammed system the main storage

is divided arnong the users and less memory is available to

each one. Tf one user increases his storage, the system

cannot multiprogram as many processes and system performance

is degraded. Figure A-I indicates typical throughput for a

multiprogrammed system with fixed main memory size. As the

amount of storage for each job is increased, system

performance is also increased. There comes a point,

however, where the number of users is decreased and the

mutiprogramming is decreased resulting in decreased

performance. The optimal storage per user is at the peak of

the performance curve, but this would vary with the mix of

processes in the system (Ref. 31: 490).

In one study of costs on the tradeoff of input/output

access versus processor time, it was found that 12

milliseconds of processor time equaled one input/output

access. Or, if a user could spend less than 12 milliseconds

of processor time and save one input/output, it would be to

his advantage on this particular system (Ref. 1: 198).

Too much multiprogramming, too many processes competing

for the processor, can have the opposite effect intended.

Generally, the less time a processor spends waiting for

input/output (more multiprogramming) the more utilized the

CPU is. The implication is that increasing the degree of

124

T

M
ET /

TA

- -

NUMBER OF JOBS

T = Unusable Time = I/O + Q
I/O = Time Waiting on Input/Output
Q = CPU Time Spent in Queue

Figure A-2. Degreee of Multiprogramming

multiprogramming increases performance. This does not take

into account the amount of overhead involved. The overhead

is a result of two factors (Ref. 31: 485). Queuing

input/output request requires a fixed amount of CPU time for

each request. Second, limited input/output resources cause

the device queues to back-up and the CPU becomes idle

waiting for input/output devices to catch-up on requests.

Figure A-2 indicates the effect too much

multiprogramming can have on CPU time (Ref. 31: 486). As

indicated, a point is reached where increased

multiprogramming has a negative effect on system

performance. Even with fewer input/output requests, the

switching time between processes will eventually cause

poorer performance.

125

gQn ir j on~s

Timesbaring is preferred because of its

"convecsztional" ability to provide a quick respcnse to user

needs. Pecause several users can work on one system,

software can easily be shared. The user's abiltiy to

interact directly with the system generally increases

productivity.

To provide quick response and adequate throughput,

timesharing systems depend on multiprogramming and efficient

scheduling techniques. Multiprogramming, when properly

implemented, provides greater utilization of system

resources and decreases turnaround time. Powever, the

effectiveness of mutiprogramming depends on several factors

including the degree of multiprogramming, amount of main

memory, the memory allocation algorithms used, and

scheduling techniques.

126

Man-Machine Interface Issues

This appendix is a correlation of several literature

sources on user-friendliness and man-computer dialogue.

Even though user-oriented systems are desirable, very little

information exists to support what creates a friendly

environment or makes a computer system easy to use.

0 Chapter Three focused on what functional requirements

should be considered when designing a computer system to

achieve user-friendliness. The material in this appendix

supports and adds to those requirements.

What the User Perceives

The majority of work to improve support for interactive

user has been done in the last decade. However, the level

has not yet been reached where user-quality can be measured.

Some researchers feel the ability to measure user-quality in

interactive systems is essential to proper system design

(Ref. 10: 270).

The research performed by Dzida, Herda, and Itzfeldt

(Ref. 10) makes an attempt at measuring user-quality by

estimating, with statistically nonoverlapping factors, how

the user perceives the system. They believe their

contribution is a step forward in actually measuring user

quality by mathematical means. Their efforts are centered

on two interests: (1) the expectations and desires of

users, and (2) using a mathematical method which gives

127

I

empirical evidence about nonoverlapping of quality aspects.

The study is based on the response of 600 persons to a

questionnaire which contained 100 system requirements based

on user-quality. Factor analysis was performed using SPSS.

The initial set of 100 system requirements was reduced to 57

requirements. Seven factors controlling 44 percent of

variance of the data were extracted. Each factor is

composed of a set of requirements belonging together, with

factor loadings of at least 0.30 with smaller loadings

indicating random correlations. The higher the loading the

more important is a requirement (Ref. 10: 271) . The seven

factors were:

(1) Self-Descriptiveness
(2) User Control
(3) Ease of Learning
(4) Problem Adequate Usability
(5) Correspondence with User Expectations
(6) Flexibility and Task Handling
(7) Fault Tolerance

The factors are subject to some degree of subjective

interpretation. It should also be considered that the

factors and requirements were first formulated in German and

then translated.

A partial list of the requirements under each factor

are listed in table B-I. It is interesting to note that the

more important requirements deal with the command language

aspects of the computer rather than performance

charactertics of the machine. It seems the users are more

concerned with how they converse with the computer than how

the computer functions. For this listing the requirements

128

Table B-I

0.70 explain system requests to the user if and when
necessary

0.68 supply explanatons in different detail and
different format upon user request

0.67 supply help features pertinent to any dialogue
situation

0.60 enable transparency of dialogue organization and
dialogue sequence at any time

0.52 explain each command and subcommand upon user
request

Factor2.-_Utr n±.Q!
0.60 admit interruptions of a task to start or resume

another task
0.59 admit process canceling without detrimental side

effects
0.59 allow abortion of particular dialogue stops or

processes

Factoof_-Leo_ ann
0.63 make user manuals superfluous
0.61 facilitate the learning of system use without

consulting manuals
0.57 be usable without special DP-knowledge
0.52 largely offer on-line forms for user input

FactLoB-4: Problem Adeute Usability
0.69 have a data management system that obviates as far

as possible the need for the user to perform
clerical or housekeeping activities

0.63 manage formatting, addressing, and memory
organization without bothering the user

0.56 determine system decisions without consulting the
user

0.50 accept free formatted command input

Factor_ _5_ 9lXPDd t jU Exprotm
0.76 behave similarly in similar situations
0.71 request analogous user actions to similar tacks to

be performed
0.65 offer minimum astonishment behavior towards the user

0.56 allow user to extend the command language
0.55 offer facilities for stacking tasks

0.53 insist only on partial retyping if previous input
was erroneous

0.52 tolerate typical typing errors
0.49 give error messages with correction hints

129

with a loading factor of 0.49 or higher were selected. The

complete list is available in Ref. 10.

The study goes on to subdivide the users into groups

based on their background experience in three areas:

(1) Interactive System Experience
(2) Mode of Operation
(3) Frequency of Use

The comparisons of weighted factors for different user

groups is illustrated in figure B-1. It is interesting to

note how the importance of factors is perceived in different

ways by the separate user groups. Notice that only five

Importance
of Factors

30% -

20%- 0

10% -

Factor
1 2 3 4 5

Experienced User e
Inexperienced User A

Figure B-1. Importance of User Factors

130

3 0%

* A6

10%-

Factor
1 2 3 4 5

Batch User0
Interactive User A

30%-

AA

20%-

10%-

Factor
1 2 3 4 5

Casual User*0
Regular User.&

Figure B-i continued.

131

factors are used because the authors found two of the

factors to be questionably valid; i.e. fault tolerence and

flexibility in task handling.

The authors readily admit their work does not lead to

an absolute definition of user-quality. However, it is one

of the very few studies in this area based on a mathematical

analysis rather than speculation. Their transcript also

contained one of the better bibliographies available on this

subject.

Rouse presents an interesting discussion on the

physical devices used in the interactive system (Ref. 46).

His work includes CRT displays, input devices, instrument

scanning, and visual information processing. While the

designer of an operating system has little control over the

physical characteristics of the machine itself, the user's

perception of the system can just as easily be influenced by

the appearence of the system as how well the operating

system performs. However, his paper tends to be too

detailed in some respects, e.g. he specifies the optimal

character matrix size for CRTs, the proper height to width

ratio for c aracters, and preferred blink frequency for

blinking cursors.

Miller also addresses the physical aspects of

interactive computing and includes some suggestions to

improve information transfer to the user (Ref. 34: 526).

One idea involves the partitioning of the screen into

132

separate work areas. The possibilities include:

(1) main work area - 20 lines
(2) input preparation area - 1 to 2 lines
(3) system facility indicator - 1/2 line
(4) diagnostic area - 1 line
(5) fixed response area - 1 to 4 lines

The main work area would be for text, system menus, or

a transaction record. Input preparation is for generating

and editing the next input to the system. The system

facility indicator is to indicate the system facility being

used, such as a compiler or editor, as well as the

characteristics of that facility such as compiler options.

The diagnostics area could be used for error messages andI conditions neccessary to recover. The fixed response area
is for situations when a fixed set of responses are

applicable.

USCD Pascal uses a partitioned screen to keep the user

* continuously informed about the state of the system and the

options available in that state. A prompt line is

maintained on the terminal screen listing the available

options. The user selects an option by typing a single

character command from the prompt line. Designers of USCDI Pascal claim this feature allows a naive user to interact
with the system easily and experienced users can ignor the

prompt line unless needed (Ref. 39: 747) . The use of a

"prompt line" in this case is a combination of (3) and (5)

above.

Most current literature agrees that the man-computer

133

dialogue basically differs in terms of two characteristics.

First, whether the dialogue is directed by the user or the

machine and second, whether the user has to determine the

input from a choice of alternatives outlined by the system

or the user is allowed to make a free response. The one

which is the guide takes the initiative during the course of

the exchange and also decides on a satisfactory termination

point (Ref. 34: 523).

The two distinctions are independent of one another,

therefore, four basic types of dialogues are possible. Each

has its advantages.

(1) system guides - user has forced-choice
(2) system guides - user has free-response
(3) user guides - user has forced-choice
(4) user guides - user has free-response

In (1) the speed of the dialogue is increased due to

the limited response of the user and the possiblity of error

is also decreased. This method seems best suited to very

structured dialogue or information gathering. For

unstructured information gathering (2) is best suited. In

(3) the user is at least somewhat knowledgeable about the

$possible requests he could make of the system. This

dialogue style is often chosen for allowing a user to select

desirable system alternatives. The maximum latitude for the

user is provided the user by (4). It is most appropriate

for experienced and confident users performing complex

tasks. However, this situation also is the least structured

and with current technology allows the maximum opportunity

for errors between the user and the system. For variations

134

on these types of dialogues see Martin (Ref. 33)

A properly designed dialogue can enhance the

productivity of a computer system by promoting active

communication between the user and machine. The dialogue

style should be tailored to the users and the situation.

In summary, studies suggest that users of practically

all backgrounds prefer the computer operating system to

concentrate on intrinsic qualities rather than technical

ones. The user is concerned with the programming problem at

hand, not the obstacles caused by a poor operating

environment.

135

A~ dilt-f

Computing System Environments

A special interest in any operating system is the

environment created for the user. This appendex discusses

some of the issues concerned with the user environment, its

involvement in productivity, and relationship to the

operating system itself.

This appendix is related to the material in Appendex B,

Man-Machine Interface Issues, but deals with the subject on

a much higher level. Chapter Three introduced the concept

of user friendliness and relates to the subject of

functional requirements in the computer environment.

Creat i g

It seems ironic that a computer able to display complex

information and perform difficult calculations, compared to

human capacity, has such a difficult time communicating with

that same human being. However, most computing systems are

not very good at communicating with the human user.

Communication with computer systems is often time consuming

and frustrating because the system does not understand the

user and the misunderstanding cannot be made known to the

user by the system.

As indicated in Chapter Three, the user represents an

implicit interface to an explicit machine. Timesharing

systems typically have very structured command languages

136

which operate contrary to human conversation. The computer

concentrates on the specific command, whereas the human

concentrates on the context of the conversation. Too often,

a system will respond only to commands phrased exactly as

required by a strict syntax for a particular computing

system. Compare this to the communication environment used

by humans. A syntax error made by one person talking to

another is not totally rejected, but usually corrected

automatically by the receiver and the conversation never

breaks its pace. The receiver understands despite the

syntactical error.

A study conducted at Carnegin-Mellon University (Ref.

17: 19) identified seven capabilites an interactive system

should have to provide the communication needs of a human.

(1) Flexible Parsing
(2) Robust Communication
(3) Identification from Description
(4) Focus Tracking
(5) Natural Output
(6) Explanatory Facility
(7) Personalization

The seven capabilites are based on two assumptions.

First, humans have basic conversational needs when they

communicate with other people. Second, computers are hard

to communicate with because they do not fill those needs.

Flexible parsing refers to the ability to allow minor syntax

errors and permit the user the opportunity to correct the

error or choose alternates if the mistake presents different

possible interpretations. Robust communication is the

ability of a system to correct misapprehensions the user may

137

have and clearly define the understanding between the user

and computer system. Without verbosity, the system must

make clear to the user any assumption made during the

conversation. Identification from description is a system

attribute of recognizing objects known internally from a

user description of the object. Focus tracking involves

following the context of a user as the dialogue changes.

The system should track the attention of the user even

across large spans that occur during command sessions and

return the focus back to the original context. Thus, a

command can be broken out of, another can be executed and

the user can return to the context of the first command.

Natural output means the output should be appropriate and

contain a sufficient amount of detail. An explanation

facility is broken down into two categories, static and

dynamic. Static explanation relates to the capabilities of

the system. Dynamic explanation relates to what the system

is doing, why, and explanation of past events.

Personalization refers to the systems ability to sense the

peculiarities of each user. For example, constant syntax

errors should be pointed out and messages or responses

should be adjusted to the user experience.

These attributes add up to what may be considered a

*graceful" interactive language. However, this does not

imply a natural input/output language. A command laguage

interface that assumes an implicit input language and

provides a tabular output can be made graceful as well.

138

Several means are available to communicate with the user and

achieve the seven capabilities mentioned above. They are

best used in combination and consist of:

(1) Animated Sequences
(2) Hand Drawn Sketches
(3) Voice Annotations
(4) Facsimile Images

Animated sequences may consist of a time-syncronized

set of graphic displays such as cursor motions, highlighted

text, and recorded speech. Hand-drawn Displays allow the

system to control cursor position to select objects that

were displayed earlier. This may involve the use of a joy

stick or a mouse as used in Smalltalk (Ref. 53) . Facsimile

images refers to printed material entered into the system

through a low cost optical scanner. Voice annotations are

easily possible even for the most inexpensive computer as a

result of developments in speech synthesis circuits. While

some of these capabilities appear too elaborate for a normal

interactive user, the potential of multimedia communication

may be too great to completely ignore as a partial solution

to solving the problems in the computing system environment.

UNIX was introduced in Chapter One and again in Chapter

Two as an example of a friendly computing environment.

Essentially, UNIX was written by programmers and for

programers (Ref. 43). Every object in UNIX looks like a

file, includin ig, all input/output channels. This makes it

possible to for input/output to be taken from any program to

139

or from any file or input/output device without special

-1 planning by the programmer. In addition, UNIX provides a

hierarchical file structure to allow users to position

themselves anywhere in the data structure to work with near

by files. The system keeps track of the current directory

the user is referring to for each file command.

The "shell" of UNIX is the command interpreter. The

shell can take input from a variety of sources. Input can

come from a file which provides an easy means of invoking a

frequently used set of commands. The commands are listed in

the file and calling the file invokes the string of

=commands. This technique can produce a specialized command

for a particular user. Each user can build a set of

commands based on programming needs. The shell also allows

iterations of commands, conditional operations, and passing

arguments from the result of one command to the input of

another.

UNIX provides communication channels called "pipes"

which allow the output from one program to be easily

directed to the input of another. Therefore, a sequence of

programming modules can be strung togeter to do some task

that would require special purpose programs in other system

environments. UNIX is just the operating system and does

not provide special purpose programs. Instead, it attempts

to provide a set of basic software tools that can be strung

together in flexible ways using input/output redirection,

pipes, and shell programs to create a programmer's

140

workbench.

However, there are several problems with UNIX (Ref.

37). First, the language, functions, and syntax are

inconsistent. Second, the syntax, command names, and

formats seem to have little relationship to their functions.

Third, the lack of interaction makes the state of the system

hard to determine. The operation of the system is so hidden

from the user that UNIX becomes recluse. Finally, learning

the system can be very difficult for novices. There is a

lack of sensible mnemonic structures.

UNIX is a powerful computing environment. However, as

the author of "The Trouble with UNIX" (Ref. 37) observed,

operating system designs should not be for the computer and

not even for the designer, but for people.

Designing Environment

Not knowing how difficult a system is to use until

after it is completed can be a costly experience. Usually,

redesign and system modification are the result. Schorer

(Ref. 48: 77) suggests three techniques for designing

system environments.

(1) Designing a software system is designing a
behavior field for the user. A sociology
of interaction exists between the user and
the system.

(2) The "use" of the system must be structured.
Good environment does not necessarily result
from structuring the system itself.

(3) The major issue is coordinating the "use" of
programs, not writing programs.

The basic philosophy underlying Schorer's approach is

process-oriented rather than object-oriented view of

141

software systems. The object-oriented view is characterized

by the belief that the most important idea is the hardware

or software itself, rather than its use. The use is

determined after the hardware or software is completed. The

process-oriented view is characterized by the designer who

attempts to engineer the "use" of the system. The system

cannot be described without describing its use.

Since the use of the system is primary, the largest

class of intended users (LCIU) should be identified. The

designer can then use "environmental consciousness" to

continually observe and record the needs of the users and

when in the environment the users have these needs. This

reduces to what use is needed when. This may point to

possible subenvironments.

This design method can be summarized by three points.

First, define the minimun each user is expected to know (the

LCIU). Second, define the major functions the users will

perform in the environment. Third, evolve the environments

and subenviroments by considering the designer as a user and

test the system against members of the LCIU. Improve the

system as needed. Essentially, the designer is building

human factor research into the design itself.

Cnc1iwiop
The user environment is of primary importance to the

operating system. Design of an operating system for a

specific group of users must first satisfy the needs of the

user environment. This environment should include a people

142

oriented command language and programming facilities as

demonstrated by UNIX files and pipes for maximum

productivity.

143

Appendix. D

Hardware Configuration

The hardware configuration is relatively fixed based on

available resources. The heart of the system, the Intel

8086 microprocessor, was mentioned in Chapter One as the

first powerful 16-bit microprocessor. The CPU card, SCP

200B is configured to the IEEE-696 standard S100 bus as are

all the cards being used. The CPU runs at 8 MHZ and has an

onboard 24 MHZ clock. The 8086 allows three clock cycles

for memory access. At 8 MHZ, 250 ns memory is required

(Ref. 21).

The CPU Support Card, SCP 300F, has one parallel input,

one paralled output, and one serial port. A time of day

clock and two 16-bit wide timers are on the Support Card. A

vectored interrupt controller provides fifteen levels of

vectored interrupts expandable to sixty-four through slave

controllers (Ref. 50: 6-22).

The Multiport Serial Card, SCP 400B, has four serial

ports, four programmable channels, and four handshaking

lines per channel. Band rates to 19,200 can be selected for

either terminals or modems. The interrupt controller may be

slaved to the CPU Support Card for fully vectored operation

or used in the polled mode.

The system configuration is indicated in figure 3. The

original system will support four users but additional

hardware may be added to support more. The current memory

is 48K but more may be added to support an increased load of

144

5" 1 8"
DISKS IDISKS

4 ~~MULTIPORT (~~~
SERIAL DISK DISK

- -j I CONTROLLER ICONTROLLERI
SCP-400B ___I_ _

USERS-

2 MUTIPRT 086PRI MARY
SERIA CPUMEMORY

3 SCP-400B SCP-200

4

CPU
Printer Support

SCP-300FJ

Figure C-1. Hardware Configuration

145

processes. The number of peripheral devices are not limited

to those indicated by figure 3, but are currently limited to

the hardware available.

146

AR99ndix-E

Structured Specification

This appendix contains the structured specification for

the operating system under development. Figures 6-42, the

data flow diagrams, are reproduced and the data dictionary

follows. The data dictionary contains the process

specfications, file definitions and data dictionaries for

each layer of the operating system.

Notation for the data dictionary:

= means is composed of
+ means AND
] means choose one of (exclusive OR)

< > means at least oneof (inclusive OR)
() means optional
f } means interations of

147

Index

Figure Page

6 Data Flow Diagram Symbols 151

7 Operating System Context Diagram 152

8 Operating System Shell Diagram 153

9 Execute System Command 154

10 Execute Control Command...... 155

11 Execute Help Command 156

12 Execute User Command 157

13 File Management Context Diagram . . . o 158

14 File Management Overview o 159

15 Execute Open File 160

16 Allocate File Space . . o 161

17 Execute Link Files 162

18 Create File Descriptor.. 163

19 Close Pile . . . o 164

20 Input/Output Management Context Diagram 165

21 Input/Ouput Management Overview 166

22 Initiate Input/Output Request 167

23 Execute Device Handler 168

24 Schedule Management Context Diagram 169

25 Schedule Management Overview . . o . . o 170

26 Create Process 171

27 Execute Scheduler 172

28 Determine Process Status 173

29 Determine Running Process 174

148

30 Enter Processor Queues 175

31 Swap Process 176

32 Memory Management Context Diagram 177

33 Memory Management Overview 178

34 Select Free Area 179

35 Deallocate File Space 180

36 Nucleus Context Diagram 181

37 Nucleus Overview Diagram 182

38 Dispatch Process 183

39 Interprocess Communication 184

40 Lock and Unlock CPU 185

41 Save and Restore CPU State 186

42 Interrupt Handler 187

Structured Specification Definitions

Data Dictionary for Operating System Shell 188

File Definitions for Operating System Shell 195

Process Description for Operating System Shell 197

Data Dictionary for File Management 201

File Definitions for File management 210

Process Description for File Management 213

Data Dictionary for Input/Output Management . . 0 & 217

File Definitions for Input/Output Management 220

Process Description for Input/Output Management 221

Data Dictionary for Schedule Management . 224

File Definitions for Schedule Management. . . 232

Process Description for Schedule Management . 233

149

Data Dictionary for Memory Management 238

File Definitions for Memory Management. 241

Process Description for Memory Management 242

Data Dictionary for Nucleus 244

File Definitions for Nucleus 247

Process Description for Nucleus 249

15

150

DATA DAT

DATA ASEA

Figure 6. Data Flow Diagram Symbols

151

ii USER f - SYSTEM
INPUT - OPERATING OTU

il I DEVICE SYSTEMC

' I SYSTEM

SUPERVISOR

Figure 7. Operating System Context Diagram

152

COMMAESND SETE

FigureD C.Oeain OytM SelDaga

DETER153

II

~i1

SYSTEM COMMAND ILLEGAL COMMAND

AUTHORIZED COMMAND

AUTHORIZATION

CONFIGURATION DATA

MENU L

MENUFILEMENU

$ Figure 9. Execute System Command

154

LO-I

EXECUTE LNQU-RN RESONS

DETERMINDAT

FguReO0xcueCnro omn

COMNI.
155 OU

SYSTEM INFORMATION

INORQET PROVIDE CMADIF
SYOEMMMSEM NF

INFO

156

SESSION INTERPRE INTERPRETED
COMMAND COMMAND COMMAND

.6.

ARGUMENTS COMMAND TABLE

Figue 12 ExCteUsrA oman

157 ITON

FILE CATALOGT

FIE REQUEST FILE DATA
REQUEST MANAGE PILE
SOURCE FILE DEVICE

YTEM

i FILE CATALOG

Figure 13. File Management Context Diagram

158

CURRENT MASTER DIRECTORY

FILE COMMAND OPEN FILE
FILE DESCRIPTOR

USER DECRIPTORS FILE DESCRIPTORS

Figure 14. File Management Overview

159

FILE COMMAND
DIRECTORY3 .1 \ OPEN FILE ERRO_R

DETERINE REQUEST___

RDIRECTORY

SUSER FILEW IER

LOGICAL FILE ACCESS

LOATO ALEXECTE

*LINK

FILE

DEEMNE PYIAL CET LINK
FILESLCAO CET FILE APPROVAL

ACCESS ACCESS

RIGHTS ABORT

33.5

DESCRIPTOR

Figure 15. Execute Open File

I160

'" ~~~~~D T USE F.. .]~ [Ii I" #11111 #Ill#..... .. [I DIRECTORY... " IIIllI

NEW ACCESS RIGHTS3.. NE ..
~~NUMBER i
~OF BLOCKS\

BLOCK ADDRESS

4STORAGE ERROR IDENTIFY BLOCK ID CONNECT

FILE STORAGE DIRECTORY

Figure 16. Allocate File Storage

161

USER DESCRIPTORS

LINK APPROVAL DETERMINE

USRF4USE

FIgRECTR 17FxeueLn FlE

162.

FILE PARAMETERS CREATE

LOCAL FILE LOCAL FILE BLOCK

EXISTING DEVICE DESCRIPTOR
BLOCK LOCATION

CENTRAL CREATE CENTRAL
FL BCENTRAL FILE BLOCK

CENTRAL FILE BLOCKBLC

i.Figure 18. Create File Descriptor

163

4.1

CLOSE FILE DELETE
REQUEST LOCAL FILE

LOCAL FILE BLOCKS

LOCATION OF
CENTRAL FILE BLOCK

r _.2. 4.3
UPAE CURRENT STATU DELETE

STATUS CENTRAL FILl

BLOCK.I
CENTRAL FILE BLOCKS

Figure 19. Close File

164

DEVICE QUEUE

Figure 20. Input/output Management Context Diagram

165

DEVICE DESCRIPTOR TABLE

I/O REQUEST

DEVICE REQUEST
MAP PARAMETER NOTICEEXCT

LOGICALINTAEDVC
TOPHYSICALREUSHADR

DEVICE 2EVC 3IS

XPHYSICAL DVCSEVELIT REQUEST
DEIESERVICFD

~MESSAGE

PARAMTERSERROR MESSAGE

Figure 21. Input/Output Management Overview

166

DEVICE
PARAMETERS 2.1 BLOCK ID 2.2

ASSEMLE NTIFY REQUEST

DEVICE NOTICE

ADD TO LIST
DEVICE SERVICE LIST

Figure 22. Initiate Input/Output Request

167

DEVICE SERVICE LIST

BOK BLOCK ID

~3.3

DELETE

NOTICE REQUEST

I.3.1

BLOCK ID

BLOCK

/ 3.2 X
IN ITIATE -..

PROCESS PROCESS NOTIFICATION

Figure 23. Execute Device Handler

168

INPU OUTPUTI

Figure 24. Schedule Management Context Diagram

169

NEW JOB

CREATE PROCESS EXECUTE REQUEST 3
PROCESS SCHEDULER XCT

SWAP OUT SWP

REQUEST

PROCESS STRUCTURE
I/O REQUEST

Figure 25. Schedule Management Overview

170

NE O EEMNMMR EUS

PRCS
IMG MMR BUD

1.

Figure 26. Create Process

171

S2.2 SWAP REQUESTNEW DETERMINE RU DETERMIN

PROCESS STATUS PROCESS RUN
A/

SWAP OUT
IREQUIREMENT

READY QUEUE WAIT UEUE

PROCESS

CONDITION 2.3
ENTER

PROCESS
QUEUES

Figure 27. Execute Scheduler

172

RUN PROCESS ID

PREEMPTED STATUS T CAG

IPROCESS RUNNABLESTUSO

1 EM ~PROCESS D RMN

2.. 1NAL

NWPROCESS STAUSTOIN STUNATUS CITO

Fiue2.triePROCESS Su

STA173

QURUE PROES

PRIORITIESPRIRR

REQUIREMENT

Figure 29. Determine Running Process

I 174

D E T ERM IN E IIllllll IIE......M ". .

WAITE QUEE.EAY.2

<*1 QUUEUIST DETEREIN

a QUEUE

.3. READYSINF

QQUEUE

QUEUE INFO DETEMIN I READ

Figure 30. Enter Processor Queues

175

SWAP-IN

REQUESTMEMORY REQUEST

.13.1

REQUIREMREQUET

FigureN 31. Swp/roes

176IT RQUS

MEMORY RECORD

Figure 32. Memory Management ContextDiagram

177

PROCESS NEEDA

Figue 33 Meory anagmen

178LOAT

FREE SPACE TABLE

FREEAREAACCEPTED

PROCESS SIZE AREA WITH PROCESS MAP
SIZE

NO FIT MESSAGE

Figure 34. Select Free Area

179

MEMORY MAP TABLE

1 80

PROCESS
I PRVIRONMENT

* v PROCESS STATE

PROCESS STRUCTURES

Figure 36. Nucleus Context Diagram

181

AD-A115 614 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC FIG 9/2
DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F-ETCtU)

UNCLASSIFIED AFIT/GCS/EE/8lO-14 NLmE3hElhh~hhlhE
ihmihhnilnnl
Ehhhhhhhhhhhmu
IIIIIIIIIIIIII
EIIIIIIIIIIIII
IIIIIIIIIIIIII

INTERRUPT ID HAN~DLEPRCS

INERPTEVROMN

PRCS TUTRSDSACPROES

Figure 37. Nucleus Overview Diagram

182

PROCESS STATUS
PROCESSOR STATES

PRCSO PRQESORSTTE

PRPROCESSOR

ORUNNABLE PROCESS STATE

Figure 38. Dispatch Process

1183

I PROCESS CONDITIONS

A PROCESS STATUS

Figure 39. Interprocess Communication

184

2.1 2.

Figure 40. Lock and Unlock CPU

185

PROCESSOR

PROCESSOR STACK

Figure 41. Save and Restore CPU State

186

INTERRUPT ID

INTERRUPT INTERRUPT VECTOR TABLE

.3.

PRRIRIT LOCATIO

RIORI IT ESATO

DISABLE MESSAGE

Figure 42. Interrupt Handler

1 87

DATA DICTIONARY
FOR OPERATING SYSTEM SHELL

DATA ELEMENT NAME: AUTHORIZATION-MESSAGE
ALIASES: SUPERVISOR-ID
COMPOSITION: AUTHORIZATION-MESSAGE = UNIQUE INTEGER

ASSIGNED TO SYSTEM-SUPERVISOR
BY THE OPERATING SYSTEM

SOURCE: VERIFY AUTHORITY (2.1)
DESTINATION: PROVIDE MENU (2.2)
COMMENTS: EXECUTE SYSTEM COMMAND LEVEL

DATAFLOW NAME: AUTHORIZED-COMMAND
ALIASES: NONE
COMPOSITION: AUTHORIZED-COMMAND = SYSTEM-COMMAND

BY A VERIFIED SYSTEM-SUPERVISOR
SOURCE: VERIFY AUTHORITY (2.1)
DESTINATION: CONFIGURE SYSTEM (2.3)
COMMENTS: EXECUTE SYSTEM COMMAND LEVEL

DATAFLOW NAME: COMMAND
ALIASES: NONE
COMPOSITION: COMMAND = USER-COMMAND

I SYSTEM-COMMAND
SOURCE: USER
DESTINATION: DETERMINE COMMAND TYPE (1)
COMMENTS: OPERATING SYSTEM SHELL

DATA ELEMENT NAME: COMMAND-LOCATION
ALIASES: COMMAND-ADDRESS
COMPOSITION: ADDRESS OF COMMAND IN MEMORY
COMMENTS: USED IN THE FILE: COMMAND-TABLE

DATAFLOW NAME: COMMAND-ARGUMENTS
ALIASES: NONE
COMPOSITION: COMMAND-ARGUMENTS = (CHARACTERS

I FILE-NAME}
SOURCE: INTERPRET COMMAND STRING (6.1)
DESTINATION: DETERMINE COMMAND CONDITIONS (6.2)
COMMENTS: EXECUTE USER COMMAND LEVEL.

AS REQUIRED BY COMMAND ENTRY IN
COMMAND-TABLE

188

DATAFLOW NAME: COMMAND-CONDITIONS
ALIASES: NONE
COMPOSITION: COMMAND-CONDITIONS = (CHARACTER}

SOURCE: DETERMINE COMMAND CONDITIONS (6.2)
DESTINATION: EXECUTE COMMAND (6.4)
COMMENTS: EXECUTE USER COMMAND LEVEL

AS SPECIFIED BY COMMAND ENTRY IN
COMMAND-TABLE

DATA ELEMENT NAME: COMMAND-INFO
ALIASES: COMMAND-INFORMATION
COMPOSITION: SEE ALIASE
SOURCE: PROVIDE COMMAND INFO (5.3)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE HELP COMMAND LEVEL

DATAFLOW NAME: COMMAND-INFO-REQUEST
ALIASES: NONE
COMPOSITION: COMMAND-INFO-REQUEST = ? + COMMAND
SOURCE: DETERMINE HELP REQUIRED (5.1)
DESTINATION: PROVIDE COMMAND INFO (5.3)
COMMENTS: EXECUTE HELP COMMAND LEVEL

DATA ELEMENT NAME: COMMAND-INFORMATION
ALIASES: COMMAND-INFO
COMPOSITION: TEXT CONTAINING OPERATING INSTRUCTIONS

AND CAPABILITIES FOR EACH COMMAND.

SOURCE: PROVIDE COMMAND INFO (5.3)
DESTINATION: RESPOND TO USER (7)
COMMENTS: USED IN COMMAND-DOCUMENTATION FILE

DATAFLOW NAME: COMMAND-REQUIREMENTS
ALIASES: NONE
COMPOSITION: COMMAND-REQUIREMENTS = REQUIRED-

ARGUMENTS - COMMAND-ARGUMENTS
SOURCE: DETERMINE COMMAND CONDITIONS (6.2)
DESTINATION: PROMPT USER (6.3)
COMMENTS: EXECUTE USER COMMAND LEVEL.

REQUIRED-ARGUMENTS = MINIMUM SET OF
COMMAND-ARGUMENTS TO EXECUTE COMMAND.

189

DATAFLOW NAME: CONTROL-COMMAND
ALIASES: NONE
COMPOSITION: CONTROL-COMMAND = LOG-IN-COMMAND

I LOG-OUT-COMMAND
I INQUIRY-COMMAND

SOURCE: DETERMINE COMMAND (3)
DESTINATION: EXECUTE CONTROL COMMAND (4)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: CONTROL-MESSAGE
ALIASES: NONE
COMPOSITION: CONTROL-MESSAGE = LOG-IN-PROMPT

LOG-OUT-MESSAGE
I INQUIRY-RESPONSE

SOURCE: EXECUTE CONTROL COMMAND (4)
DESTINATION: RESPOND TO USER (7)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: HELP-COMMAND
ALIASES: NONE
COMPOSITION: HELP-COMMAND = SYSTEM-INFO-REQUEST

I COMMAND-INFO-REQUEST
SOURCE : DETERMINE COMMAND (4)
DESTINATION: EXECUTE HELP COMMAND (5)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: HELP-INFO
ALIASES: NONE
COMPOSITION: HELP-INFO = SYSTEM-INFO

I COMMAND-INFO
SOURCE: EXECUTE HELP COMMAND (5)
DESTINATION: RESPOND TO USER (7)
COMMENTS: OPERATING SYSTEM SHFLL LEVEL

DATA ELEMENT NAME: INQUIRY-COMMAND
ALIASES: NONE
COMPOSITION: INQUIRY-COMMAND = SPECIAL CHARACTER
SOURCE: DETERMINE CONTROL COMMAND (4.1)
DESTINATION: EXECUTE INQUIRY (4.4)
COMMENTS: EXECUTE CONTROL COMMAND LEVEL

190

DATAFLOW NAME: INQUIRY-RESPONSE
ALIASES: NONE
COMPOSITION: INQUIRY-RESPONSE = USER-LIST

I SYSTEM-DOCUMENTATION
I PERIPHERAL-CHARACTERISTICS

SOURCE: EXECUTE INQUIRY (4.4)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE CONTROL COMMAND

DATAFLOW NAME: INTERPRETED-COMMAND
ALIASES: NONE
COMPOSITION: INTERPRETED-COMMAND = COMMAND

+ COMMAND-LOCATION
POURCE: INTERPRET COMMAND STRING (6.1)
DESTINATION: EXECUTE COMMAND (6.4)
COMMENTS: EXECUTE USER COMMAND

DATAFLOW NAME: LOG-IN-COMMAND
ALIASES: NONE
COMPOSITION: LOG-IN-COMMAND = "LOGIN"

+ USER-NAME
+ USER-ACCOUNT-NUMBER

SOURCE: DETERMINE CONTROL COMMAND (4.1)
DESTINATION: LOG-OUT USER (4.3)
COMMENTS: EXECUTE CONTROL COMMAND LEVEL

DATAFLOW NAME: LOG-IN-PROMPT
ALIASES: NONE
COMPOSITION: LOG-IN-PROMPT = CURRENT DATE

+ CURRENT TIME
+ VERIFICATION OF LOGIN

SOURCE: LOG-IN USER (4.2)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE CONROL COMMAND LEVEL.

MAY INCLUDE ANY SPECIAL INFORMATION
AS DETERMINED TO SYSTEM-SUPERVISOR.

DATAFLOW NAME: LOG-OUT-COMMAND
ALIASES: NONE
COMPOSITION: LOG-OUT-COMMAND = "LOGOUT"
SOURCE: DETERMINE CONTROL COMMAND (4.1)

DESTINATION: LOG-OUT USER (4.3)
COMMENTS: EXECUTE CONTROL COMMAND LEVEL

191

DATAFLOW NAME: LOG-OUT-MESSAGE
ALIASES: NONE
COMPOSITION: LOG-OUT-MESSAGE = CURRENT TIME

+ USER-NAME "LOGGED OUT"
+ RUNNING PROCESSES

SOURCE: LOG-OUT USER (4.3)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE CONTROL COMMAND LEVEL.

RUNNING PROCESSES ARE THOSE USER
PROGRAMS STILL IN EXECUTION AT
LOGOUT TIME.

DATAFLOW NAME: PERIPHIAL-CHARACTERISTICS
ALIASES: NONE

COMPOSITION: ALL INFORMATION REQUIRED TO INTERFACE
THE OPERATING SYSTEM TO INPUT/OUTPUT
DEVICES (BAUD RATE, STEP RATE, PORT
NUMBER, ETC).

COMMENTS: USED IN SYSTEM-PARAMETER FILE.

DATAFLOW NAME: PROCESS-CONDITIONS
ALIASES: NONE
COMPOSITION: PROCESS-CONDITIONS = PROCESS-STATUS
COMMENTS: PROCESS-STATUS IS AN ELEMENT OF AN

ACTIVE PROCESS-DESCRIPTOR.
PROCESS-STATUS = READY I WAITING

I RUNNING

DATAFLOW NAME: PROMPT
ALIASES: NONE
COMPOSITION: PROMPT = COMMAND-REQUIREMENTS + "?"
SOURCE: PROMPT USER (6.3)
DESTINATION: RESPOND TO USER (7)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: SESSION-COMMAND
ALIASES: NONE
COMPOSITION: SESSION-COMMAND = ENTRY IN COMMAND-TABLE
SOURCE: DETERMINE COMMAND (3)
DESTINATION: INTERPRET COMMAND STRING (6.1)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

192

DATAFLOW NAME: SYSTEM-COMMAND
ALIASES: NONE
COMPOSITION: SYSTEM-COMMAND = ENTRY FROM MENU-FILE
SOURCE: DETERMINE COMMAND TYPE (1)
DESTINATION: VERIFY AUTHORITY (2.1)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: SYSTEM-DOCUMENTATION
ALIASES: NONE
COMPOSITION: TEXT FILE CONTAINING INFORMATION ON

SYSTEM OPERATION AND CAPABILITIES
ON BOTH HARDWARE AND SOFTWARE

SOURCE:
DESTINATION:
COMMENTS: USED IN CONFIGURATION-DATA, SYSTEM-

INFORMATION, AND SYSTEM-DATA FILES.

DATAFLOW NAME: SYSTEM-INFO
ALIASES: NONE
COMPOSITION: SYSTEM-INFO = USER-LIST

I COMMAND-DOCUMENTATION
PERIPHERAL-CHARACTERISTICS

I SYSTEM-DOCUMENTATION
SOURCE: PROVIDE SYSTEM INFO (5.2)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE HELP COMMAND LEVEL

DATAFLOW NAME: SYSTEM-INFO-REQUEST
ALIASES: NONE
COMPOSITION: SYSTEM-INFO-REQUEST = USER + "?"

I COMMAND + "?"
I DEVICE + "?"
i SYSTEM + "?"

SOURCE: DETERMINE HELP REQUIRED (5.1)
DESTINATION: PROVIDE YSTEM INFO (5.2)
COMMENTS: EXECUTE HELP COMMAND LEVEL

DATAFLOW NAME: SYSTEM-RESPONSE
ALIASES: NONE
COMPOSITION: SYSTEM-RESPONCE = PROMPT

I COMMAND-PROMPT
SOURCE: EXECUTE COMMAND (6.4)
DESTINATION: RESPOND TO USER (7)
COMMENTS: EXECUTE USER COMMAND LEVEL.

COMMAND-PROMPT IS A RESPONSE FROM
A SPECIFIC COMMAND'S EXECUTION.

193

DATAFLOf NAME: USER-COMMAND
ALIASES: NONE
COMPOSITION: USER-COMMAND = SESSION-COMMAND

I HELP-COMMAND
I CONTROL-COMMAND

SOURCE: DETERMINE COMMAND TYPE (1)
DESTINATION: DETERMINE COMMAND (3)
COMMENTS: OPERATING SYSTEM SHELL LEVEL

DATAFLOW NAME: USER-AUTHORIZATION
ALIASES: NONE
COMPOSITION: USER-AUTHORIZATION = USER-ID

+ USER-NAME
+ USER-ACCOUNT

COMMENTS: MUST BE CONTAINED IN USER-LIST FILE

DATAFLOW NAME: USER-RESPONSE
ALIASES: NONE
COMPOSITION: USER-RESPONSE = HELP-INFO

SYSTEM-RESPONSE
I CONRTOL-MESSAGE

SOURCE: RESPOND TO USER (7)
DESTINATION: USER
COMMENTS: OPERATING SYSTEM SHELL LEVEL

194

FILE DEFINITIONS
OPERATING SYSTEM SHELL

FILE OR DATABASE NAME: COMMAND-DOCUMENTATION
ALIASES: NONE
COMPOSITION: COMMAND-DOCUMENTATION =

(COMMAND
+ COMMAND-INFORMATION}

ORGANIZATION:
COMMENTS:

FILE OR DATABASE NAME: COMMAND-TABLE
ALIASES: NONE
COMPOSITION: COMMAND-TABLE = (COMMAND

+ {ARGUMENTS)
+ (COMMANDS-CONDITIONS)
+ COMMAND-LOCATION)

ORGANIZATION: SEQUENTIAL BY COMMAND
COMMENTS: EXECUTE USER COMMAND LEVEL

FILE OR DATABASE NAME: CONFIGURATION-DATA
ALIASES: NONE
COMPOSITION: CONFIGURATION-DATA = USER-LIST

+ USER-AUTHIZATION
+ COMMAND-TABLE
+ COMMAND-DOCUMENTATION
+ PERIPHERAL-CHARACTERISTICS
+ SYSTEM-DOCUMENTATION

ORGANIZATION: TABULAR BY CATAGORY
COMMENTS: OPERATING SYSTEM SHELL LEVEL

FILE OR DATABASE NAME: MENU-FILE
ALIASES: NONE
COMPOSITION: MENU-FILE = CATAGORIES OF

CONFIGURATION-DATA
ORGANIZATION: BY CATAGORY
COMMENTS: EXECUTE SYSTEM COMMAND LEVEL

195

FILE OR DATABASE NAME: SYSTEM-INFORMATION
ALIASES: NONE
COMPOSITION: SYSTEM-INFORMATION = USER-LIST

+ COMMAND-DOCUMENTATION
+ PERIPHERAL-CHARACTERISTICS
+ SYSTEM-DOCUMENTATION

ORGANIZATION: BY CATAGORY
COMMENTS: EXECUTE HELP-COMMAND LEVEL

FILE OR DATABASE NAME: SYSTEM-DATA
ALIASES: NONE
COMPOSITION: SYSTEM-DATA = USER-LIST

+ SYSTEM-DOCUMENTATION
+ PERIPHERAL-CHARACTERISTICS

ORGANIZATION: BY CATAGORY
COMMENTS: EXECUTE CONTROL-COMMAND LEVEL

FILE OR DATABASE NAME: SYSTEM-PARAMETERS
ALIASES: NONE
COMPOSITION: SYSTEM-PARAMETERS = MENU-FILE

+ CONFIGURATION-DATA
ORGANIZATION: BY CATAGORY
COMMENTS: OPERATING SYSTEM SHELL LEVEL

FILE OR DATABASE NAME: USER-DESCRIPTOR
ALIASES: NONE
COMPOSITION: USER-DESCRIPTOR = USER-ID

+ USER-NAME
+ USER-FILE-DIRECTORY
+ ACCOUNT-NUMBER

ORGANIZATION: RECORD
COMMENTS: EXECUTE CONTROL COMMAND

FILE OR DATABASE NAME: USER-LIST
ALIASES: NONE
COMPOSITION: USER-LIST = (USER-NAME}
ORGANIZATION: SEQENTIAL
COMMENTS: SYSTEM-DATA, SYSTEM-INFORMATION,

AND CONFIGURATION-DATA

19

196

II
PROCESS DESCRIPTION
OPERATING SYSTEM SHELL

PROCESS NAME: DETERMINE COMMAND TYPE
PROCESS NUMBER: 1
PROCESS DESCRIPTION:
If COMMAND is a SYSTEM-COMMAND and USER is SYSTEM-SUPERVISOR

then COMMAND is a SYSTEM-COMMAND
If COMMAND is a SYSTEM-COMMAND and USER is not SYSTEM-

SUPERVISOR
then re-prompt USER for COMMAND

else COMMAND is USER-COMMAND

PROCESS NAME: VERIFY AUTHORITY
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Compare USER-ID with SUPERVISOR-ID.
If USER-ID not SUPERVISOR-ID

then reject COMMAND.
else PROVIDE MENU.

PROCESS NAME: PROVIDE MENU
PROCESS NUMBER: 2.2
PROCESS DESCRIPTION:
Read MENU-FILE and send MENU to USER

PROCESS NAME: CONFIGURE SYSTEM
PROCESS NUMBER: 2.3
PROCESS DESCRIPTION:
Manipulate CONFIGURATION-DATA as requested by the COMMAND.
Change USER-LIST, system resoures or peripheral data.

PROCESS NAME: DETERMINE COMMAND
PROCESS NUMBER: 3
PROCESS DESCRIPTION:
Case USER-COMMAND of:

LOG-IN or LOG-OUT or INQUIRY
then USER-COMMAND = CONTROL-COMMAND

HELP or ?
then USER-COMMAND = HELP-COMMAND

else USER-COMMAND = SESSION-COMMAND

197

PROCESS NAME: DETERMINE CONTROL COMMAND
PROCESS NUMBER: 4.1
PROCESS DESCRIPTION:
Case CONTROL-COMMAND of:

LOG-IN-COMMAND
then log USER into system

LOG-OUT-COMMAND
then log USER out of system

INQUIRY-COMMAND
then provide SYSTEM-DATA

PROCESS NAME: LOG-IN USER
PROCESS NUMBER: 4.2
PROCESS DESCRIPTION:
If USER-AUTHORIZATION not in LOG-IN-COMMAND

then prompt USER for USER-AUTHORIZATION
Examine the USER-LIST for USER-AUTHORIZATION
If USER-AUTHORIZATION is valid and no USER-DESCRIPTOR exists

then establish a cooresponding USER-DESCRIPTOR
If USER-AUTHORIZATION is valid and USER-DESCRIPTOR exists

then provide LOG-IN-PROMPT containing PROCESS-CONDITIONS

PROCESS NAME: LOG-OUT USER
PROCESS NUMBER: 4.3
PROCESS DESCRIPTION:
If USER-ID in contained in USER-DESCRIPTORS

then check PROCESS-CONDITIONS
If PROCESS-CONDITIONS are terminated

then remove USER-DESCRIPTOR

PROCESS NAME: EXECUTE INQUIRY
PROCESS NUMBER: 4.4
PROCESS DESCRIPTION:
Provide SYSTEM-DATA via INQUIRY-RESPONSE

PROCESS NAME: DETERMINE HELP REQUIRED
PROCESS NUMBER: 5.1
PROCESS DESCRIPTION:
If HELP-COMMAND contains SESSION-COMMAND

then PROVIDE COMMAND-INFO
else provide SYSTEM-INFO

198

PROCESS NAME: PROVIDE SYSTEM INFO
PROCESS NUMBER: 5.2
PROCESS DESCRIPTION:
Provide SYSTEM-MENU via SYSTEM-INFO
Read selection from SYSTEM-MENU
Read SYSTEM-INFORMATION and respond via SYSTEM-INFO

PROCESS NAME: PROVIDE COMMAND INFO
PROCESS NUMBER: 5.3
PROCESS DESCRIPTION:
Output COMMAND-DOCUMENTATION for associated COMMAND

PROCESS NAME: INTERPRET COMMAND STRING
PROCESS NUMBER: 6.1
PROCESS DESCRIPTION:

*If SESSION-COMMAND is contained in COMMAND-TABLE
then route INTERPRETED-COMMAND to EXECUTE COMMAND
route all other data to DETERMINE COMMAND CONDITIONS

PROCESS NAME: DETERMINE COMMAND CONDITIONS
PROCESS NUMBER: 6.2
PROCESS DESCRIPTION:
If COMMAND-TABLE requires more COMMAND-ARGUMENTS

then PROMPT USER
If COMMAND-CONDITIONS are in COMMAND-ARGUMENTS

then route COMMAND-CONDITIONS to EXECUTE COMMAND

PROCESS NAME: PROMPT USER
PROCESS NUMBER: 6.3
PROCESS DESCRIPTION:
Send COMMAND-REQUIREMENTS to USER via PROMPT

199

PROCESS NAME: EXECUTE COMMAND
PROCESS NUMBER: 6.4
PROCESS DESCRIPTION:
Create a process to run the INTERPRETED-COMMAND
given the COMMAND-CONDITIONS as arguments.
Inform the user of progress via SYSTEM-RESPONSE.

PROCESS NAME: RESPOND TO USER
PROCESS NUMBER: 7
PROCESS DESCRIPTION:
Send: HELP-INFO or

CONTROL-MESSAGE or
SYSTEM-RESPONSE

responce to proper USER-ID

200

* DATA DICTIONARY
FOR FILE MANAGEMENT LEVEL

DATAFLOW NAME: ACCESS-ABORT
ALIASES: NONE
COMPOSITION: MESSAGE INDICATING VIOLATION OF FILE

ACCESS PRIVILEGES
SOURCE: CHECK ACCESS RIGHTS (3.5)
DESTINATION: SOURCE OF FILE-REQUEST
COMMENTS: EXECUTE OPEN FILE LEVEL

DATAFLOW NAME: ACCESS-RIGHTS
ALIASES: NONE
COMPOSITION: ACCESS-RIGHTS = PARTNER-LIST

+ PROTECTION-KEY
SOURCE: EXTRACT DIRECTORY DATA (3.4)
DESTINATION: CHECK ACCESS RIGHTS (3.5)

COMMENTS: EXECUTE OPEN FILE LEVEL

DATAFLOW NAME: BLOCK-ADDRESS
ALIASES: NONE
COMPOSITION: BLOCK-ADDRESS = FILE SIZE

+ FIRST BLOCK-ID
+ LAST BLOCK-ID OF A
NEW-FILE

SOURCE: CONNECT FILE BLOCKS (3.3.3)
DESTINATION: USER-FILE-DIRECTORY
COMMENTS: ALLOCATE FILE STORAGE LEVEL

DATA ELEMENT NAME: BLOCK-ID
ALIASES: NONE
COMPOSITION: BLOCK-ID = INTEGER UNIQUE TO FILE-BLOCK
SOURCE: IDENTIFY FREE BLOCKS (3.3.2)
DESTINATION: CONNECT FILE BLOCKS (3.3.3)
COMMENTS: ALLOCATE FILE STORAGE LEVEL

DATAFLOW NAME: CENTRAL-FILE-BLOCK

ALIASES: NONE
COMPOSITION: SEE FILE DEFINITIONS
SOURCE: CREATE CENTRAL-FILE-BLOCK (3.8.3)

DESTINATION: DEVICE-DESCRIPTOR
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

201

DATAFLOW NAME: CLOSE-FILE-REQUEST
ALIASES: NONE
COMPOSITION: CLOSE-FILE-REQUEST = FILE-NAME
SOURCE: LOCATE USER FILE DIRECTORY (2)
DESTINATION: DELETE LOCAL FILE BLOCK (4.1)
COMMENTS: CLOSE FILE LEVEL

DATAFLOW NAME: CURRENT-STATUS
ALIASES: NONE
COMPOSITION: CURRENT-STATUS = USE-COUNT
SOURCE: UPDATE STATUS (4.2)
DESTINATION: DELETE CENTRAL-FILE-BLOCK (4.3)
COMMENTS: CLOSE FILE LEVEL

DATA ELEMENT NAME: DEVICE-DESCRIPTOR-ADDRESS

ALIASES: NONE
COMPOSITION: DEVICE-DESCRIPTOR-ADDRESS =

POINTER TO A DEVICE-DESCRIPTOR
SOURCE: CREATE LOCAL-FILE-BLOCK (3.8.1)

DESTINATION: CREATE CENTRAL-FILE-BLOCK (3.8.3)
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

DATAFLOW NAME: DIRECTORY-ERROR
ALIASES: NONE
COMPOSITION: MESSAGE INDICATION FILE-NAME IS NOT

LOCATED IN THE USER-DIRECTORY
SOURCE: LOCATE USER DIRECTORY (3.2)
DESTINATION: SOURCE OF FILE REQUEST
COMMENTS: EXECUTE OPEN FILE LEVEL

DATAFLOW NAME: DIRECTORY-LINKS
ALIASES: NONE
COMPOSITION: POINTER TO FILE-NAME FROM USER-DIRECTORY

AND USER-DIRECTORY TO FILE-NAME
SOURCE: EXECUTE LINK FILES (3.6)
DESTINATION: USER-FILE-DIRECTORY
COMMENTS: EXECUTE OPEN FILE LEVEL

DATA ELEMENT NAME: DIRECTORY-LOCATION
ALIASES: NONE
COMPOSITION: ADDRESS OF MASTER-FILE-DIRECTORY
SOURCE: DETERMINE MASTER DIRECTORY (1)
DESTINATION: LOCATE USER FILE DIRECTORY (2)
COMMENTS: FILE MANAGEMENT OVERVIEW LEVEL

202

DATAFLOW NAME: EXISTING-BLOCK-LOCATION
ALIASES: NONE
COMPOSITION: EXISTING-BLOCK-LOCATION = ADDRESS

OF ASSOCIATED CENTRAL-FILE-BLOCK
SOURCE: TEST CENTRAL-FILE-BLOCK (3.8.2)
DESTINATION: CREATE LOCAL-FILE-BLOCK (3.8.1)
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

DATAFLOW NAME: FILE-COMMAND
ALIASES: NONE
COMPOSITION: FILE-COMMAND = USER-ID

+ OWNER-ID
+ {FILE-NAME)
+ OPERATION
+ USER-FILE-DIRECTORY-
LOCATION

SOURCE: LOCATE USER FILE DIRECTORY (2)
DESTINATION: EXECUTE OPEN FILE (3)
COMMENTS: FILE MANAGEMENT LEVEL AND

EXECUTE OPEN FILE LEVEL
USER-ID AND OWNER-ID MAY BE THE SAME

DATA ELEMENT NAME: FILE-DATA
ALIASES: NONE
COMPOSITION: ANY BIT PATTERN PASSED TO A FILE DEVICE
SOURCE: INPUT/OUTPUT DEVICE
DESTINATION: FILE DEVICE

DEVICE
COMMENTS: CONTEXT LEVEL

DATAFLOW NAME: FILE-DESCRIPTOR
ALIASES: NONE
COMPOSITION: FILE-DESCRIPTOR = LOCAL-FILE-BLOCK

+ CENTRAL-FILE-BLOCK
SOURCE: EXECUTE OPEN FILE (3)
DESTINATION: DEVICE DESCRIPTOR
COMMENTS: FILE-MANAGEMENT-LEVEL

DATAFLOW NAME: FILE-LOCATION
ALIASES: NONE
COMPOSITION: FILE-LOCATION = FILE-NAME

+ USER-FILE-DIRECTORY-
LOCATION

SOURCE: LOCATE DIRECTORY ENTRY (3.2)
DESTINATION: EXTRACT DIRECTORY DATA (3.4)
COMMENTS: EXECUTE OPEN FILE LEVEL

203

DATA ELEMENT NAME: FILE-NAME
ALIASES: NONE

COMPOSITION: FILE-NAME = (CHARACTERS)
SOURCE: DETERMINE FILE LOCATION (3.7)
DESTINATION: CREATE CENTRAL-FILE-BLOCK (3.8.3)
COMMENTS: CREATE FILE DESCRIPTOR

DATAFLOW NAME: FILE-PARAMETERS
ALIASES: NONE
COMPOSITION: FILE-PARAMETERS = FILE-NAME

+ STARTING-BLOCK
+ OPERATION

SOURCE: EXTRACT DIRECTORY DATA (3.4)
DESTINATION: CREATE FILE DESCRIPTORS (3.8)
COMMENTS: EXECUTE OPEN FILE LEVEL

DATAFLOW NAME: FILE-REQUEST

ALIASES: NONE
COMPOSITION: FILE-REQUEST = USER-ID

+ OWNER-ID

+ {FILE-NAME}
+ OPERATION

SOURCE: USER COMMAND OR SYSTEM PROCESS
DESTINATION: LOCATE USER FILE DIRECTORY (2)
COMMENTS: USER-ID MAY BE SAME AS OWNER-ID

DATAFLOW NAME: LINK-APPROVAL
ALIASES: NONE
COMPOSITION: LINK-APPROVAL = PROTECTION-KEY

+ PARTNER
SOURCE: CHECK ACCESS RIGHTS (3.5)
DESTINATION: EXECUTE LINK FILES (3.6)
COMMENTS: EXECUTE OPEN FILE LEVEL

EXECUTE LINK FILES LEVEL

DATAFLOW NAME: LOCAL-PILE-BLOCK
ALIASES: NONE
COMPOSITION: SEE LOCAL-FILE-BLOCK IN FILE OR DATA

BASE DICTIONARY
SOURCE: CREATE LOCAL-FILE-BLOCK (3.8.1)
DESTINATION: LOCAL-FILE-BLOCK CHAIN
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

204

DATA ELEMENT NAME: LOCATION-OF-CENTRAL-FILE-BLOCK
ALIASES: NONE
COMPOSITION: LOCATION-OF-CENTRAL-FILE-BLOCK

POINTER MAINTAINED BY LOCAL-FILE-BLOCK
SOURCE: DELETE LOCAL-FILE-BLOCK (4.1)
DESTINATION: UPDATE STATUS (4.2)
COMMENTS: CLOSE FILE LEVEL

DATA ELEMENT NAME: LOGICAL-DEVICE
ALIASES: NONE
COMPOSITION: DISK OR DISK DRIVE DESIGNATION
SOURCE: EXTRACT DIRECTORY DATA (3.4)
DESTINATION: DETERMINE FILE LOCATION (3.7)
COMMENTS: EXECUTE OPEN FILE LEVEL

DATA ELEMENT NAME: MODE
ALIASES: OPERATION
COMPOSITION: SEE ALIASE
SOURCE: SEE ALIASE
DESTINATION: SEE ALIASE
COMMENTS: SEE ALIASE

DATAFLOW NAME: NEW-ACCESS-RIGHTS
ALIASES: NONE
COMPOSITION: NEW-ACCESS-RIGHTS = FILE-NAME

+ ACCESS-PRIVILEGES
SOURCE: ESTABLISH ACCESS RIGHTS (3.3.4)
DESTINATION: USER-FILE-DIRECTORY
COMMENTS: EXECUTE OPEN FILE LEVEL

ALLOCATE FILE STORAGE LEVEL

DATAFLOW NAME: NEW-FILE
ALIASES: NONE
COMPOSITION: NEW-FILE = FILE-NAME + USER-ID

+ (FILE-SIZE)
SOURCE: LOCATE DIRECTORY ENTRY (3.2)
DESTINATION: ALLOCATE FILE STORAGE (3.3)
COMMENTS: EXECUTE OPEN FILE LEVEL

205

DATAFLOW NAME: NEW-FILE-NAME
ALIASES: FILE-NAME
COMPOSITION: NEW-FILE-NAME = FILE-NAME
SOURCE: DETERMINE NUMBER OF BLOCKS (3.3.1)
DESTINATION: ESTABLISH ACCESS RIGHTS (3.3.4)
COMMENTS: EXECUTE OPEN FILE LEVEL

ALLOCATE FILE STORAGE LEVEL

DATA ELEMENT NAME: NUMBER-OF-BLOCKS
ALIASES: NONE
COMPOSITION: INTEGER
SOURCE: DETERMINE NUMBER OF BLOCKS (3.3.1)
DESTINATION: IDENTIFY FREE BLOCKS (3.3.2)
COMMENTS: ALLOCATE FILE STORAGE LEVEL

DATAFLOW NAME: OPEN-FILE-REQUEST
ALIASES: NONE
COMPOSITION: OPEN-FILE-REQUEST = FILE-NAME

+ USER-ID
+ OWNER-ID
+ [WRITE, READ,
DELETE, ADD]

+ USER-FILE-
DIRECTORY-LOCATION

SOURCE: DETERMINE COMMAND (3.1)
DESTINATION: LOCATE DIRECTORY ENTRY (3.2)
COMMENTS: EXECUTE OPEN FTLE LEVEL

DATA ELEMENT NAME: OPERATION
ALIASES: NONE
COMPOSITION: OPERATION = [WRITE, READ, ADD,

DELETE]
COMMENTS: OPERATION IS AN ARGUMENT TO A FILE-

COMMAND OR FILE-REQUEST.
CREATE IS A SPECIAL CA53L OF WRITE

DATA ELEMENT NAME: OWNER-LINK
ALIASES: NONE
COMPOSITION: POINTER TO A FILE IN A USER-FILE-

DIRECTORY
SOURCE: LINK OWNER TO USER (3.6.2)
DESTINATION: USER-FILE-DIRECTORY
COMMENTS: EXECUTE LINK FILES LEVEL

206

DATAFLOW NAME: PARTNER
ALIASES: NONE

COMPOSITION: PARTNER = USER-NAME
COMMENTS: USED IN USER-FILE-DIRECTORY AND PARTNER-

LIST TO INDICATE ACCESS PRIVILEGES.

DATAFLOW NAME: PARTNER-LIST
ALIASES: NONE
COMPOSITION: PARTNER-LIST = {PARTNER

+ PROTECTION-KEY }
I {PARTNER)
+ PROTECTION-KEY

COMMENTS: CONTAINED IN THE USER-FILE-DIRECTORY
FOR EACH FILE.

DATAFLOW NAME: PHYSICAL-LOCATION
ALIASES: NONE

COMPOSITION: PHYSICAL-LOCATION = DEVICE-DESCRIPTOR
+ FILE BLOCK LOCATION

SOURCE: DETERMINE FILE LOCATION (3.7)
DESTINATION: CREATE FILE DESCRIPTOR (3.8)
COMMENTS: EXECUTE OPEN FILE LEVEL

DATA ELEMENT NAME: PROTECTION-KEY
ALIASES: NONE
COMPOSITION: PROTECTION-KEY = [N,E,R,A,P,D]
COMMENTS: N = NO ACCESS

E = EXECUTE
R = READ
A = APPEND
P = PROTECTION ALTERATION
D = DELETE

N IS ASSIGNED AS A PROTECTION KEY BY DEFAULT. OTHERS MUST

BE EXPLICITLY REQUESTED. PROTECTION KEYS ARE APPLIED TO
THE PARTNER-LIST, NOT THE FILE OWNER.

DATAFLOW NAME: REQUESTED-FILE-NAME
ALIASES: FILE-NAME
COMPOSITION: SEE ALIASE
SOURCE: DETERMINE USER DIRECTORY (3.6.1)
DESTINATION: LINK USER TO OWNER (3.6.3)
COMMENTS: EXECUTE LINK FILES LEVEL

207

DATAFLOW NAME: STARTING-BLOCK
ALIASES: NONE
COMPOSITION: STARTING-BLOCK = FIRST-FILE-BLOCK

+ DEVICE-NAME
SOURCE: DETERMINE FILE LOCATION (3.7)
DESTINATION: CREATE FILE DESCRIPTOR (3.8)
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

DATAFLOW NAME: STATUS
ALIASES: NONE
COMPOSITION:. STATUS = WRITE-BIT

+ USE-COUNT
SOURCE: CENTRAL-FILE-BLOCK
DESTINATION: TEST CENTRAL-FILE-BLOCK (3.8.2)
COMMENTS: CREATE FILE DESCRIPTOR LEVEL

DATA ELEMENT NAME: STORAGE-ERROR
ALIASES: NONE
COMPOSITION: MESSAGE INDICATING INSUFFICIENT STORAGE

AVAIALBE FOR FILE-NAME.
SOURCE: IDENTIFY FREE BLOCKS (3.3.2)
DESTINATION: SOURCE OF FILE-REQUEST
COMMENTS: ALLOCATE FILE STORAGE LEVEL

DATA ELEMENT NAME: USE-COUNT
ALIASES: NONE
COMPOSITION: INTEGER
COMMENTS: USED IN CENTRAL-FILE-DESCRIPTOR

DATAFLOW NAME: USER-DIRECTORY-INFO
ALIASES: NONE
COMPOSITION: USER-DIRECTORY-INFO = USER-DIRECTORY

LOCATION
+ FILE-NAME

SOURCE: DETERMINE USER DIRECTORY (3.6.1)
DESTINATION: LINK OWNER TO USER (3.6.2)
COMMENTS: EXECUTE LINK FILES LEVEL

DATA ELEMENT NAME: USER-FILE-DIRECTORY-LOCATION
ALIASES: NONE
COMPOSITION: LOGICAL POINTER TO A USER-FILE-

DIRECTORY
COMMENTS: NONE

208

DATA ELEMENT NAME: USER-ID
ALIASES: NONE
COMPOSITION: INTEGER UNIQUE TO EACH USER.
COMMENTS: ASSIGNED AND KNOWN ONLY BY THE SYSTEM

ASSOCIATED WITH USER-NAME.

DATA ELEMENT NAME: USER-NAME
ALIASES: NONE
COMPOSITION: CHARACTER STRING UNIQUE TO EACH USER.
COMMENTS: USED BY USER FOR SYSTEM IDENTIFICATION.

SYSTEM ASSOCIATES USER-NAME WITH USER-ID.

DATA ELEMENT NAME: WRITE-BIT
ALIASES: NONE
COMPOSITION: INTEGER
COMMENTS: USED IN CENTRAL-FILE-DESCRIPTOR

209

--mil

FILE DEFINITIONS
FILE MANAGEMENT LEVEL

.FILE OR DATABASE NAME: CENTRAL-FILE-BLOCK
ALIASES: NONE
COMPOSITION: CENTRAL-FILE-BLOCK =

FILE-NAME
+ FIRST-BLOCK-ADDRESS
+ USE-COUNT
+ WRITE-BIT
+ NEXT-CENTRAL-FILE-BLOCK
+ DEVICE-DESCRIPTOR-ADDRESS

ORGANIZATION: RECORD
COMMENTS: CREATE-FILE-DESCRIPTOR LEVEL

FILE OR DATABASE NAME: CURRENT-MASTER-DIRECTORY
ALIASES: NONE
COMPOSITION: CURRENT-MASTER-DIRECTORY=

MASTER-FILE-DIRECTORY
I USER-FILE-DIRECTORY

ORGANIZATION: SEE MASTER-FILE-DIRECTORY (USER-
FILE-DIRECTORY

COMMENTS: FILE MANAGEMENT OVERVIEW

FILE OR DATABASE NAME: FILE-CATALOGUE
ALIASES: NONE
COMPOSITION: FILE-CATALOGUE =
ORGANIZATION: MASTER-FILE-DIRECTORY

+ (USER-FILE-DIRECTORY}
COMMENTS: FILE MANAGEMENT CONTEXT DIAGRAM

FILE OR DATABASE NAME: FILE-DESCRIPTORS
ALIASES: NONE
COMPOSITION: FILE-DESCRIPTOR =

LOCAL-FILE-BLOCK
+ CENTRAL-FILE-BLOCK

ORGANIZATION: RECORD ATTACH TO DEVICE-DESCRIPTORS
COMMENTS: FILE MANAGEMENT OVERVIEW

Ij 210
L___A

FILE OR DATABASE NAME: FILE-STORAGE-DIRECTORY
ALIASES: NONE
COMPOSITION: FILE-STORAGE-DIRECTORY =

{FILE-NAME
+ USER-ID
+ FIRST-BLOCK
+ {FILE-BLOCK
+ NEXT-BLOCK)
+ LAST-BLOCK}

ORGANIZATION: SEQUENTIAL BY FILE-NAME AND USER-ID
COMMENTS: ALLOCATE FILE STORAGE LEVEL

FILE OR DATABASE NAME: LOCAL-FILE-BLOCK
ALIASES: NONE
COMPOSITION: LOCAL-FILE-BLOCK -

ACCESS-MODE
+ NEXT-BLOCK-LOCATION
+ CENTRAL-FILE-BLOCK-LOCATION

ORGANIZATION: RECORD
COMMENTS: CREATE-FILE-DESCRIPTOR LEVEL

FILE OR DATABASE NAME: MASTER-FILE-DIRECTORY
ALIASES: NONE
COMPOSITION: MASTER-FILE-DIRECTORY =

{USER-ID
+ USER-FILE-DIRECTORY-LOCATION

ORGANIZATION: SEQUENTIAL BY USER-NAME
COMMENTS:

FILE OR DATABASE NAME: USER-DESCRIPTOR
ALIASES: NONE
COMPOSITION: USER-DESCRIPTOR = USER-ID

+ USER-NAME
+ CURRENT-DIRECTORY
+ ACCOUNT-NUMBER

ORGANIZATION: RECORD
COMMENTS: FILE MANAGEMENT OVERVIEW

211

FILE OR DATABASE NAME: USER-FILE-DIRECTORY
ALIASES: NONE
COMPOSITION: USER-FILE-DIRECTORY =

(FILE-NAME
+ FILE-LOCATION
+ FILE-TYPE
+ PARTNER-LIST
+ PROTECTION-KEY
+ FILE-LENGTH
+ LINKS-TO-OTHER-FILES
+ LAST-UPDATE)

ORGANIZATION: SEQUENTIAL BY FILE-NAME

2

I 212

PROCESS DESCRIPTION
FOR FILE MANAGEMENT LEVEL

PROCESS NAME: DETERMINE MASTER DIRECTORY
PROCESS NUMBER: 1
PROCESS DESCRIPTION:
If the USER's CURRENT-DIRECTORY is MASTER-DIRECTORY

then determine location of USER's-FILE-DIRECTORY

PROCESS NAME: LOCATE USER FILE DIRECTORY
PROCESS NUMBER: 2
PROCESS DESCRIPTION:
If USER's-CURRENT-DIRECTORY is not the MASTER-DIRECTORY

then determine USER-FILE-DIRECTORY from CURRENT-
DIRECTORY entry in USER-DESCRIPTOR.

determine OWNER of USER-FILE-DIRECTORY

PROCESS NAME: DETERMINE COMMAND
PROCESS NUMBER: 3.1
PROCESS DESCRIPTION:
If ADD-COMMAND

then open only the FILE-DIRECTORIES
and EXECUTE-LINK-FILES (3.6)

else open FILE-NAME

PROCESS NAME: LOCATE DIRECTORY ENTRY
PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
SEARCH USER-FILE-DIRECTORY FOR LOCATION OF FILE-NAME.
If OPERATION is WRITE or CREATE

then pass NEW-FILE to ALLOCATE FILE SPACE (3.3).
If FILE-NAME is not in DIRECTORY

thne indicate DIRECTORY-ERROR

PROCESS NAME: EXTRACT DIRECTORY DATA
PROCESS NUMBER: 3.4
PROCESS DESCRIPTION:
From the FILE-LOCATION, Read: FILE-NAME

ACCESS-PRIVILEGES
PARTNER-LIST
LOGICAL LOCATION OF FILE
ADDRESS OF DEVICE DESCRIPTOR

213

PROCESS NAME: CHECK ACCESS RIGHTS
PROCESS NUMBER: 3.5
PROCESS DESCRIPTION:
Compare the USER-ID against the PARTNER-LIST.
Compare the OPERATION against the ACCESS-PRIVILEGES

PROCESS NAME: DETERMINE FILE LOCATION
PROCESS NUMBER: 3.7
PROCESS DESCRIPTION:
Compute the PHYSICAL-LOCATION from the LOGICAL-LOCATION

PROCESS NAME: DETERMINE NUMBER OF BLOCKS
PROCESS NUMBER: 3.3.1
PROCESS DESCRIPTION:
Calculate the NUMBER-OF-FILE-BLOCKS needed from FILE-SIZE.
NUMBER-OF-BLOCKS = (FILE-SIZE / BLOCK SIZE) rounded up.

PROCESS NAME: IDENTIFY FREE BLOCKS
PROCESS NUMBER: 3.3.2
PROCESS DESCRIPTION:
Examine the FILE-STORAGE-DIRECTORY for enough free BLOCKS
to store NEW-FILE.
If NUMBER-OF-BLOCKS are not available

then return a STORAGE-ERROR to source of NEW-FILE

PROCESS NAME: CONNECT FREE BLOCKS
PROCESS NUMBER: 3.3.3
PROCESS DESCRIPTION:
Link the identified FREE-BLOCKS together.
Remove the identified BLOCKS from the FREE LIST.
Record the STARTING- and ENDING-BLOCK-ADDRESS of NEW-FILE.

PROCESS NAME: DETERMINE USER DIRECTORY
PROCESS NUMBER: 3.6.1
PROCESS DESCRIPTION:
Examine the USER-DESCRIPTOR to determine the location of
the USER-DIRECTORY.

214

PROCESS NAME: LINK OWNER TO USER
PROCESS NUMBER: 3.6.2
PROCESS DESCRIPTION:
Establish a pointer from the OWNER's-FILE TO THE USER's-
FILE-DIRECTORY in the OWNER'S-DIRECTORY.

PROCESS NAME: LINK USER TO OWNER
PROCESS NUMBER: 3.6.3
PROCESS DESCRIPTION:
Establish a pointer from the USER's-DIRECTORY to the OWNER's-
FILE in the USER's-DIRECTORY.

PROCESS NAME: CREATE LOCAL-FILE-BLOCK
PROCESS NUMBER: 3.8.1
PROCESS DESCRIPTION:
Record: CENTRAL-FILE-BLOCK-LOCATION

OPERATION.
Executed each time a process opens a file.

PROCESS NAME: TEST CENTRAL-FILE-BLOCK
PROCESS NUMBER: 3.8.2
PROCESS DESCRIPTION:
If USE-COUNT is set

then FILE can be opened for READing only.
If WRITE-BIT is set

then FILE cannot be opened.
- else open file by CREATING FILE-DESCRIPTOR

PROCESS NAME: CREATE CENTRAL-FILE-BLOCK

PROCESS NUMBER: 3.8.3
PROCESS DESCRIPTION:
Record: FILE-NAME

STARTING-BLOCK
USE-COUNT
WRITE-BIT
DEVICE-DESCRIPTOR-ADDRESS

Link to DEVICE-DESCRIPTOR with other CENTRAL-FILE-BLOCKS.
One CENTRAL-FILE-BLOCK for each open FILE.

215

PROCESS NAME: DELETE LOCAL FILE BLOCK
PROCESS NUMBER: 4.1
PROCESS DESCRIPTION:
Locate and delete LOCAL-PILE-BLOCK associated with
FILE-NAME.

PROCESS NAME: UPDATE STATUS
PROCESS NUMBER: 4.2
PROCESS DESCRIPTION:
Decrement USE-COUNT in CENTRAL-FILE-BLOCK associated with
FILE-NAME.
Read current USE-COUNT.

PROCESS NAME: DELETE CENTRAL FILE BLOCK
PROCESS NUMBER: 4.3
PROCESS DESCRIPTION:
If USE-COUNT is not set after UPDATE STATUS (4.2)

then delete CENTRAL-FILE-BLOCK

216

DATA DICTIONARY
FOR INPUT/OUPUT MANAGEMENT

DATA FLOW NAME: BLOCK
ALIASES: REQUEST-BLOCK
COMPOSITION: BLOCK = DESTINATION

+ OPERATION-MODE
+ ORIGINATING PROCESS
+ ERROR ADDRESS
+ BLOCK-ID

SOURCE: ASSEMBLE REQUEST BLOCK (2.1)
REMOVE REQUEST (3.1)

DESTINATION: ADD TO DEVICE SERVICE QUEUE (2.3)
INITIATE I/O (3.2)

COMMENTS: INITIATE INPUT/OUTPUT REQUEST LEVEL,
EXECUTE DEVICE HANDLER LEVEL.

DATA ELEMENT NAME: BLOCK-ID
ALIASES: NONE
COMPOSITION: BLOCK-ID = INTEGER
SOURCE: ASSEMBLE REQUEST BLOCK (2.1)

DELETE PROM LIST (3.3)
DESTINATION: NOTIFY DEVICE HANDLER (2.2)

COMMNTS:INITIATE INPUT/OUTPUT (3.2)
COMMNTS:INITIATE INPUT/OUTPUT REQUEST LEVEL,

EXECUTE DEVICE HANDLER LEVEL.

DATA ELEMENT NAME: DATA-TRANSLATED
ALIASES: NONE
COMPOSITION: DATA-TRANSLATED = DATA READY FOR

TRANSFER TO DESTINATION
SOURCE: TRANSLATE DATA (3.4)
DESTINATION: TRANSFER DATA (3.5)
COMMENTS: EXECUTE DEVICE HANDLER LEVEL

DATA FLOW NAME: DEVICE-PARAMETERS
ALIASES: NONE
COMPOSITION: DEVICE-PARAMETERS = DEVICE-ID

+ DEVICE-STATUS
+ LOCATION OF TRANSLATION TABLE
+ DEVICE-CHARACTERISTICS

SOURCE: MAP LOGICAL TO PHYSICAL DEVICE (1)
DESTINATION: ASSEMBLE REQUEST BLOCK (2.1)
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

217

DATA ELEMENT NAME: ERROR-MESSAGE
ALIASES: NONE
COMPOSITION: ERROR-MESSAGE =DATA PLANTED BY

INITIATE 1/O (3.4)
SOURCE: CHECK I/O PARAMETERS (4)

*DESTINATION: INPUT/OUTPUT SOURCE
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

DATA ELEMENT NAME: INPUT-DATA
ALIASES: NONE
COMPOSITION: INPUT-DATA = DATA TO BE TRANSLATED
SOURCE:- INITIATE INPUT/OUTPUT (3.2)
DESTINATION: TRNSFER DATA (3.5)
COMMENTS: EXECUTE DEVICE HANDLER LEVEL

DATA FLOW NAME: I/O REQUEST
ALIASES: NONE
COMPOSITION: I/O REQUEST =DESTINATION

+ SOURCE

+ OPERATION-MODE
SOURCE: INPUT/OUTPUT REQUEST SOURCE
DESTINATION: MAP LOGICAL TO PHYSICAL DEVICE (1)
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

DATA FLOW NAME: OPERATION-MODE
ALIASES: NONE
COMPOSITION: OPERATION-MODE =INPUT IOUTPUT
COMMENTS: USED IN THE REQUEST-BLOCK TO INDICATE

MODE OF TRANSFER DESIRED. ALSO USED AS
A CHARACTERISTIC OF A DEVICE.

DATA ELEMENT NAME: OUTPUT-DATA
ALIASES: NONE
COMPOSITION: OUTPUT-DATA = DATA READY TO BY TRANSFERED
SOURCE: INITIATE I/O (3.2)
DESTINATION: TRANSLATE DATA (3.4)
COMMENTS: EXECUTE DEVICE HANDLER LEVEL

DATA FLOW NAME: PHYSICAL-DEVICE
ALIASES: NONE
COMPOSITION: PHYSICAL-DEVICE = PERIPHERAL-ID
SOURCE: MAP LOGICAL TO PHYSICAL (1)
DESTINATION: CHECK I/O PARAMETERS (4)
COMMENTS: INPUT/OUTPUT MANAGE14ENT OVERVI EW LEVEL

218

DATA ELEMENT NAME: PROCESS-NOTIFICATION
ALIASES: NONE
COMPOSITION: PROCESS-NOTIFICATION = MESSAGE OF

COMPLETION TO ORIGINATING PROCESS
SOURCE: NOTIFY PROCESS (3.6)
DESTINATION: ORIGINATING PROCESS
COMMENTS: EXECUTE DEVICE HANDLER.

ORIGINATING PROCESS IS INDICATED BY
THE ENTRY IN THE REQUEST-BLOCK

DATA ELEMENT NAME: REQUEST-NOTICE
ALIASES: NONE
COMPOSITION: REQUEST-NOTICE = MESSAGE TO DEVICE-

HANDLER ABOUT NEW I/O REQUEST
SOURCE: NOTIFY DEVICE HANDLER (2.2)
DESTINATION: REMOVE REQUEST (3.1)
COMMENTS: INITIATE INPUT/OUTPUT REQUEST LEVEL TO

EXECUTE DEVICE HANDLER LEVEL

DATA ELEMENT NAME: REQUEST-SERVICED-MESSAGE
ALIASES: PROCESS NOTIFICATION
COMPOSITION: SEE ALIASE
SOURCE: EXECUTE DEVICE HANDLER (3)
DESTINATION: SEE ALIASE
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW LEVEL

DATA FLOW NAME: TRANSFER-COMPLETE
ALIASES: NONE
COMPOSITION: TRANSFER-COMPLETE = MESSAGE INDICATING

DATA TRANSFER IS FINISHED
SOURCE: TRANSFER DATA (3.5)
DESTINATION: NOTIFY PROCESS (3.6)
COMMENTS: EXECUTE DEVICE HANDLER LEVEL

219

FILE DEFINITIONS
FOR INPUT/OUTPUT MANAGEMENT

FILE OR DATABASE NAME: DEVICE-DESCRIPTOR
ALIASES: NONE
COMPOSITION: DEVICE-DESCRIPTOR = DEVICE-ID

+ LOCATION OF TRANSLATION-TABLE
+ CURRENT STATUS
+ CURRENT USER-PROCESS
+ DEVICE-SERVICE-LIST
+ CURRENT REQUEST-BLOCK

ORGANIZATION: RECORD
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW

FILE OR DATABASE NAME: DEVICE-DESCRIPTOR-TABLE
ALIASES: NONE
COMPOSITION: DEVICE-DESCRIPTOR-TABLE =

(DEVICE-DESCRIPTOR}
ORGANIZATION: SEQUENTIAL BY DEVICE
COMMENTS: INPUT/OUTPUT MANAGEMENT OVERVIEW

FILE OR DATABASE NAME: DEVICE-SERVICE-LIST
ALIASES: NONE
COMPOSITION: DEVICE-SERVICE-LIST = [REQUEST-BLOCK)
ORGANIZATION: LINKED LIST
COMMENTS: INITIATE INPUT/OUTPUT REQUEST LEVEL

EXECUTE DEVICE HANDLER LEVEL

FILE OR DATABASE NAME: REQUEST-BLOCK
ALIASES: NONE
COMPOSITION: REQUEST-BLOCK = DESTINATION

+ OPERATION-MODE
+ ORIGINATING-PROCESS

+ ERROR-ADDRESS
ORGANIZATION: SEQENTIAL, BY DESTINATION
COMMENTS: REQUEST-BLOCK IS LINKED TO THE

CORRESPONDING DEVICE-DESCRIPTOR.

220

PROCESS DESCRIPTIONS

FOR INPUT/OUTPUT MANAGEMENT

PROCESS NAME: MAP LOGICAL TO PHYSICAL DEVICE
PROCESS NUMBER: 1
PROCESS DESCRIPTION:
Read LOGICAL-DEVICE from I/O-REQUEST. Match LOGICAL-
DEVICE with entry in DEVICE-DESCRIPTOR-TABLE and read
PHYSICAL-DEVICE

PROCESS NAME: ASSEMBLE REQUEST BLOCK
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Create REQUEST-BLOCK from DEVICE-PARAMETERS

PROCESS NAME: NOTIFY DEVICE HANDLER
PROCESS NUMBER: 2.2
PROCESS DESCRIPTION:
Use INTERPROCESS-COMMUNICATION to notify the DEVICE-HANDLER
a new REQUEST-BLOCK is in the DEVICE-SERVICE-LIST

PROCESS NAME: ADD TO DEVICE QUEUE
PROCESS NUMBER: 2.3
PROCESS DESCRIPTION:
Insert the REQUEST-BLOCK in the DEVICE-SERVICE-LIST
for the appropriate DEVICE-DESCRIPTOR.

PROCESS NAME: REMOVE REQUEST
PROCESS NUMBER: 3.1
PROCESS DESCRIPTION:
Select the highest priority REQUEST-BLOCK from the
DEVICE-SERVICE-LIST.

PROCESS NAME: INITIATE I/O
PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
Read the DEVICE-DESCRIPTOR to determine requirements for
I/O and initiate the I/O action.

221

PROCESS NAME: DELETE FROM LIST
PROCESS NUMBER: 3.3
PROCESS DESCRIPTION:
Delete the REQUEST-BLOCK from the DEVICE-SERVICE-LIST
after INITIATE I/O (3.2) has completed.

PROCESS NAME: TRANSLATE DATA
PROCESS NUMBER: 3.4
PROCESS DESCRIPTION:
Translate INPUT-DATA according to the TRANSLATION-TABLE
in the DEVICE-DESCRIPTOR

PROCESS NAME: TRANSFER DATA
PROCESS NUMBER: 3.5
PROCESS DESCRIPTION: Move DATA to DESTINATION

PROCESS NAME: NOTIFY PROCESS
PROCESS NUMBER: 3.6
PROCESS DESCRIPTION:
Signal the PROCESS-DESCRIPTOR of the current process
when TRANSFER-DATA is complete via INTERPROCESS-
COMMUNICATIONS.

PROCESS NAME: CHECK I/O PARAMETERS
PROCESS NUMBER: 4
PROCESS DESCRIPTION:
Check REQUEST-BLOCK against DEVICE-DESCRIPTOR
Check: OPERATION-MODE against CHARACTERISTICS

DESTINATION against OPERATION-MODE
TRANSFER-RATE
QUANITY OF DATA

222

DATA DICTIONARY
FOR SCHEDULE MANAGEMENT

DATA ELEMENT NAME: BLOCKED-PROCESS
ALIASES: NONE
COMPOSITION: BLOCKED-PROCESS = PROCESS-ID
SOURCE: SCHEDULE NEW PROCESS (1.5)
DESTINATION: CHANGE STATUS TO UNRUNNABLE (2.1.3)
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: ENVIRONMENT
ALIASES: NONE
COMPOSITION: ENVIRONMENT = PROCESSOR REGISTERS

+ PSW
SOURCE: DETERMINE MEMORY BOUNDS (1.1)
DESTINATION: INITIALIZE PROCESS (1.3)
COMMENTS: CREATE PROCESS LEVEL

DATA FLOW NAME: I/O-REQUEST
ALIASES: NONE
COMPOSITION: I/O-REQUEST = MEMORY-BOUNDS

+ PROCESS LOCATION
SOURCE: INITIATE SWAP I/O (3.4)
DESTINATION: INPUT/OUTPUT MANAGER
COMMENTS: SWAP PROCESS LEVEL

DATA FLOW NAME: JOB-TYPE
ALIASES: NONE
COMPOSITION: JOB-TYPE = USER I SYSTEM
SOURCE: DETERMINE MEMORY BOUNDS (1.1)
DESTINATION: ASSIGN PRIORITY (1.4)
COMMENTS: CREATE PROCESS LEVEL

DATA FLOW NAME: MEMORY-BOUNDS
ALIASES: NONE
COMPCSITION: MEMORY-BOUNDS = STARTING-ADDRESS+ ENDING-ADDRESS

SOURCE:
MEMORY MANAGER

DESTINATION: DETERMINE MEMORY BOUNDS (1.1)
DETERMINE MEMORY AVAILABLE (3.1)

COMMENTS: CREATE PROCESS LEVEL.
SWAP PROCESS LEVEL.

224 .
- rea Inaml

DATA FLOW NAME: MEMORY-REQUEST
ALIASES: NONE
COMPOSITION: MEMORY-REQUEST = PROCESS-ID
SOURCE: DETERMINE MEMORY BOUNDS (1.1)

DETERMINE MEMORY AVAILABLE (3.1)
DESTINATION: MEMORY MANAGER
COMMENTS: CREATE PROCESS LEVEL.

SWAP PROCESS LEVEL.

DATA FLOW NAME: MEMORY-RESPONSE
ALIASES: NONE
COMPOSITION: MEMORY-RESPONSE = MEMORY-BOUNDS

I NO-FIT-MESSAGE
SOURCE: USER OR SYSTEM REQUEST
DESTINATION: DETERMINE MEMORY BOUNDS (1.1)
COMMENTS: CREATE PROCESS LEVEL

DATA FLOW NAME: NEW-JOB
ALIASES: NONE
COMPOSITION: NEW-JOB = PROGRAM-LOCATION

+ USER-ID
SOURCE: USER OR SYSTEM REQUEST
DESTINATION: DETERMINE MEMORY BOUNDS (1.1)
COMMENTS: CREATE PROCESS LEVEL

DATA FLOW NAME: NEW-PROCESS
ALIASES: NONE
COMPOSITION: NEW-PROCESS = PROCESS-DESCRIPTOR
SOURCE: SCHEDULE NEW PROCESS (1.5)
DESTINATION: DETERMINE PROCESS STATUS (2.1.1)
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: PREEMPTED-PROCESS
ALIASES: NONE
COMPOSITION: PREEMPTED-PROCESS = PROCESS-ID
SOURCE: SCHEDULE NEW PROCESS (1.5)
DESTINATION: CHANGE STATUS RUNNABLE (2.1.2)
COMMENTS: DETERMINE PROCESS STATUS LEVEL.

PREEMPTED BY TIMER INTERRUPT ROUTINE.
STATUS CHANGES FROM RUNNING TO RUNNABLE

225

1

DATA FLOW NAME: PROCESS-CONDITION
ALIASES: QUEUE-REQUEST
COMPOSITION: PROCESS-CONDITION = PROCESS-ID

+ [READY-Q I WAIT-Q I
SOURCE: REQUEST QUEUE ACTION (2.1.5)
DESTINATION: SELECT QUEUE ACTION (2.3.1)
COMMENTS: DETERMINE PROCESS STATUS LEVEL.

READY-Q AND WAIT-Q ARE INDICATIONS OF
WHERE THE PROCESS MUST BE LOCATED.

DATA FLOW NAME: PROCESS-IMAGE
ALIASES: ENVIRONMENT
COMPOSITION: PROCESS-IMAGE = PROCESSOR REGISTERS

A COMMENTS: AN ELEMENT OF PROCESS-DESCRIPTOR

DATA FLOW NAME: PROCESS-INFO
ALIASES: NONE
COMPOSITION: PROCESS-INFO = PROCESS-ID

+ [WAIT-Q I READY-Q]
SOURCE: SELECT QUEUE ACTION (2.3.1)
DESTINATION: DELETE FROM QUEUE (2.3.2)
COMMENTS: ENTER PROCESSOR QUEUE LEVEL

DATA FLOW NAME: QUEUE
ALIASES: NONE
COMPOSITION: QUEUE = PROCESS-ID

+ [WAIT-Q I READY-Q]
SOURCE: DELETE FROM QUEUE (2.3.2)
DESTINATION: DETERMINE QUEUE (2.3.3)
COMMENTS: ENTER PROCESSOR QUEUE LEVEL

DATA FLOW NAME: QUEUE-PRIORITY
ALIASES: NONE
COMPOSITION: QUEUE-PRIORITY = HIGHEST PRIORITY IN

THE READY-QUEUE
+ HIGHEST PRIORITY IN

THE WAIT-QUEUE
SOURCE: DETERMINE QUEUE PRIORITY (2.2.1)
DESTINATION: DETERMINE STATUS (2.2.2)
COMMENTS: DETERMINE RUNNING PROCESS

226

*1

DATA FLOW NAME: QUEUE-REQUEST
ALIASES: PROCESS-CONDITION
COMPOSITION: SEE ALIASE
SOURCE: REQUEST QUEUE ACTION (2.1.5)
DESTINATION: SELECT QUEUE ACTION (2.3.1)
COMMENTS: ENTER PROCESSOR QUEUE LEVEL

DATA FLOW NAME: QUEUE-STATUS

ALIASES: NONE
COMPOSITION: QUEUE-STATUS = PROCESS-ID IN WAIT-QUEUE

I PROCESS-ID IN READY-QUEUE
SOURCE: DETERMINE STATUS (2.2.2)
DESTINATION: DETERMINE LOCATION (2.2.3)
COMMENTS: DETERMINE RUNNING PROCESS LEVEL

DATA ELEMENT NAME: READY-Q
ALIASES: NONE
COMPOSITION: READY-Q = INDICATION OF WHERE A PROCESS

IS MOVING TO
COMMENTS: USED IN THE ENTER PROCESSOR QUEUE LEVEL

AND THE DETERMINE PROCESS STATUS LEVEL.
CONVERSE IS WAIT-Q.

DATA FLOW NAME: READY-QUEUE-INFO
ALIASES: NONE
COMPOSITION: READY-QUEUE-INFO = PROCESS-ID
SOURCE: DETERMINE QUEUE (2.3.3)
DESTINATION: ADD TO QUEUE (2.3.5)
COMMENTS: ENTER PROCESSOR QUEUE LEVEL

DATA ELEMENT NAME: READY-QUEUE-PRIORITIES
ALIASES: NONE
COMPOSITION: READY-QUEUE-PRIORITIES = HIGHEST

PRIORITY IN THE READY-QUEUE
SOURCE: READY-QUEUE
DESTINATION: DETERMINE QUEUE PRIORITY (2.2.1)
COMMENTS: DETERMINE RUNNING PROCESS LEVEL

227

DATA FLOW NAME: RUN-PROCESS
ALIASES: RUN-PROCESS-ID
COMPOSITION: RUN-PROCESS = PROCESS-ID
SOURCE: DETERMINE LOCATION (2.2.3)
DESTINATION: CHANGE STATUS TO RUNNING (2.1.4)
COMMENTS: DETERMINE RUNNING PROCESS LEVEL.

HIGHEST RUNNABLE PROCESS IN SYSTEM

DATA FLOW NAME: RUN-PROCESS-ID
ALIASES: RUN-PROCESS

COMPOSITION: SEE ALIASE
SOURCE: SEE ALIASE
DESTINATION: SEE ALIASE
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: RUNNABLE-PROCESS-ID
ALIASES: NONE
COMPOSITION: RUNNABLE-PROCESS-ID = PROCESS-ID
SOURCE: DETERMINE PROCESS STATUS (2.1.1)
DESTINATION: CHANGE STATUS TO RUNNABLE (2.1.2)
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: RUNNABLE-STATUS
ALIASES: NONE
COMPOSITION: RUNNABLE-STATUS = PROCESS-ID + READY-Q
SOURCE: CHANGE STATUS TO RUNNABLE (2.1.2)
DESTINATION: REQUEST QUEUE ACTION (2.1.5)
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: STATUS

ALIASES: NONE
COMPOSITION: STATUS = RUNNING

I RUNNABLE
I UNRUNNABLE

SOURCE: SCHEDULER
DESTINATION: PROCESS-DESCRIPTOR
COMMENTS: AN ELEMENT OF A PROCESS-DESCRIPTOR

228

DATA FLOW NAME: SWAP-APPROVAL
ALIASES: NONE
COMPOSITION: SWAP-APPROVAL = MEMORY-RESPONSE

+ PROCESS-ID
SOURCE: DETERMINE MEMORY AVAILABLE (3.1)
DESTINATION: EXECUTE SWAP-IN (3.2)
COMMENTS: SWAP PROCESS LEVEL

DATA FLOW NAME: SWAP-IN-INFO
ALIASES: NONE
COMPOSITION: SWAP-IN-INFO = SWAP-APPROVAL

+ PROCESS-LOCATION
SOURCE: EXECUTE SWAP IN (3.2)
DESTINATION: INITIATE SWAP I/O (3.4)
COMMENTS: SWAP PROCESS LEVEL

REQUIRED TO INITIATE I/O REQUEST

DATA FLOW NAME: SWAP-IN-REQUEST
ALIASES: NONE
COMPOSITION: SWAP-IN-REQUEST = PROCESS-ID

+ PROCESS-LOCATION
SOURCE: DETERMINE LOCATION (2.2.3)
DESTINATION: DETERMINE MEMORY AVAILABLE (3.1)
COMMENTS: SWAP PROCESS LEVEL

DATA PLOW NAME: SWAP-OUT-INFO
ALIASES: NONE
COMPOSITION: SWAP-OUT-INFO = PROCESS-ID

+ MEMORY-ADDRESS
SOURCE: EXECUTE SWAP OUT (3.3)
DESTINATION: INITIATE SWAP I/O (3.4)
COMMENTS: SWAP PROCESS LEVEL.

REQUIRED TO INITIATE I/O REQUEST.

DATA FLOW NAME: SWAP-OUT-REQUEST
ALIASES: NONE
COMPOSITION: SWAP-OUT-REQUEST = PROCESS-ID
SOURCE: DETERMINE LOCATION (2.2.3)
DESTINATION: EXECUTE SWAP OUT (3.3)
COMMENTS: SWAP PROCESS LEVEL

229

DATA FLOW NAME: SWAP-OUT-REQUIREMENT
ALIASES: NONE
COMPOSITION: SWAP-OUT-REQUIREMENT = NO-FIT-MESSAGE
SOURCE: DETERMINE MEMORY AVAILABLE (3.1)
DESTINATION: DETERMINE QUEUE PRIORITY (2.2.1)
COMMENTS: SWAP PROCESS LEVEL.

INDICATES ROOM MUST BE MADE IN MEMORY
BEFORE A SWAP-IN CAN OCCUR.

DATA FLOW NAME: SWAP-REQUEST
ALIASES: NONE
COMPOSITION: SWAP-REQUEST =SWAP-IN-REQUEST

I SWAP-OUT-REQUEST
SOURCE: DETERMINE LOCATION (2.2.3)
DESTINATION: EXECUTE MEMORY SWAP (3)

COMMENTS: DETERMINE RUNNING PROCESS

DATA ELEMEMT NAME:. WAIT-Q

ALIASES: NONE
COMPOSITION: WAIT-Q = INDICATION OF WHERE A PROCESS

IS MOVING TO
COMMENTS: USED IN THE ENTER PROCESSOR QUEUE LEVEL

AND THE DETERMINE PROCESS STATUS LEVEL.
CONVERSE IS READY-Q.

DATA FLOW NAME: WAIT-QUEUE-INFO
ALIASES: NONE
COMPOSITION: WAIT-QUEUE-INFO = PROCESS-ID
SOURCE: DETERMINE QUEUE (2.3.3)
DESTINATION: ADD TO WAIT QUEUE (2.3.4)
COMMENTS: ENTER PROCESSOR QUEUE LEVEL

DATA FLOW NAME: WAIT-QUEUE-PRIORITIES
ALIASES: NONE
COMPOSITION: WAIT-QUEUE-PRIORITIES = HIGHEST PRIORITY

IN THE WAIT-QUEUE
SOURCE: WAIT-QUEUE
DESTINATION.: DETERMINE QUEUE PRIORITY (2.2.1)
COMMENTS: DETERMINE RUNNING PROCESS LEVEL

230

DATA FLOW NAME: UNRUNNABLE-PROCESS-ID
ALIASES: NONE
COMPOSITION: UNRUNNABLE-PROCESS-ID = PROCESS-ID
SOURCE: DETERMINE PROCESS STATUS (2.1.1)
DESTINATION: CHANGE STATUS TO UNRUNNABLE (2.1.3)
COMMENTS: DETERMINE PROCESS STATUS LEVEL

DATA FLOW NAME: UNRUNNABLE-STATUS
ALIASES: NONE
COMPOSITION: UNRUNNABLE-STATUS = PROCESS-ID + WAIT-Q
SOURCE: CHANGE STATUS TO UNRUNNABLE (2.1.3)
DESTINATION: REQUEST QUEUE ACTION (2.1.5)
COMMENTS: DETERMINE PROCESS STATUS

I

FILE DEFINITIONS
FOR SCHEDULE MANAGEMENT

FILE OR DATABASE NAME: NEW-PROCESS-DESCRIPTOR
ALIASES: NONE
COMPOSITION: NEW-PROCESS-DESCRIPTOR = PROCESS-

DESCRIPTOR
ORGANIZATION: RECORD
COMMENTS: CREATE PROCESS LEVEL

FILE OR DATABASE NAME: PROCESS-DESCRIPTOR
ALIASES: PROCESS
COMPOSITION: PROCESS-DESCRIPTOR = USER-ID

+ PROCESS-ID
+ PRIORITY
+ STATUS

+ MEMORY-BOUNDS
+ PROCESS-IMAGE
+ POINTER-TO-NEXT-PROCESS

ORGANIZATION: RECORD
COMMENTS: ELEMENT OF PROCESS-STRUCTURE

FILE OR DATABASE NAME: PROCESS-STRUCTURE
ALIASES: PROCESSOR-QUEUE
COMPOSITION: PROCESS-STRUCTURE = READY-QUEUE

+ WAIT-QUEUE
ORGANIZATION:
COMMENTS: SCHEDULE MANAGEMENT OVERVIEW LEVEL

FILE OR DATABASE NAME: READY-QUEUE
ALIASES: NONE
COMPOSITION: READY-QUEUE = {PROCESS-DESCRIPTOR}
ORGANIZATION: LINKED LIST
COMMENTS: EXECUTE SCHEDULER LEVEL

ENTER PROCESSOR QUEUE LEVEL

FILE OR DATABASE NAME: WAIT-QUEUE
ALIASES: NONE
COMPOSITION: WAIT-QUEUE = (PROCESS-DESCRIPTOR)
ORGANIZATION: LINKED LIST
COMMENTS: EXECUTE SCHEDULER LEVEL

ENTER PROCESSOR QUEUE LEVEL

232

PROCESS DESCRIPTIONS
FOR SCHEDULE MANAGEMENT

PROCESS NAME: DETERMINE PROCESS IMAGE
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION:
Request memory for NEW-PROCESS
If memory is available

then record MEMORY-BOUNDS in PROCESS-DESCRIPTOR and
make STATUS = RUNNABLE

else make STATUS = UNNRUNNABLE

PROCESS NAME: INITIALIZE PROCESS
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
If PROCESS is a NEW-PROCESS

then set PSW and PROCESSOR-REGISTERS to nil

PROCESS NAME: ASSIGN PRIORITY
PROCESS NUMBER: 1.3
PROCESS DESCRIPTION:
If PROCESS is a SYSTEM-PROCESS

then set PRIORITY high
else set PRIORITY low

PROCESS NAME: SCHEDULE
PROCESS NUMBER: 1.4
PROCESS DESCRIPTION:
Interrupt SCHEDULER to introduce NEW-PROCESS
Extract NEW-PROCESS-DESCRIPTOR and send to SCHEDULER

PROCESS NAME: DETERMINE PROCESS STATUS
PROCESS NUMBER: 2.1.1
PROCESS DESCRIPTION:
If NEW-PROCESS is in memory

then PROCESS is RUNNABLE
If NEW-PROCESS is not in memory

then PROCESS is UNRUNNABLE

233

PROCESS NAME: CHANGE TO RUNNABLE
PROCESS NUMBER: 2.1.2
PROCESS DESCRIPTION:
If PROCESS was preempted by a timer interrupt

then change STATUS from RUNNING to RUNNABLE
If PROCESS is new

then STATUS = RUNNABLE

PROCESS NAME: CHANGE TO UNRUNNABLE
PROCESS NUMBER: 2.1.3
PROCESS DESCRIPTION:
If PROCESS is BLOCKED-PROCESS

then STATUS = UNRUNNABLE and record UNRUNNABLE-STATUS
If PROCESS is NEW-PROCESS

then STATUS = UNRUNNABLE and UNRUNNABLE-STATUS = NO-
MEMORY

PROCESS NAME: CHANGE TO RUNNING
PROCESS NUMBER: 2.1.4
PROCESS DESCRIPTION:
CHANGE the PROCESS-DESCRIPTOR in READY-QUEUE associated
with PROCESS-ID to indicate STATUS = RUNNING.

PROCESS NAME: DETERMINE QUEUE CHANGES
PROCESS NUMBER: 2.1.5
PROCESS DESCRIPTION:
If PROCESS-STATUS = RUNNABLE

then PROCESS-DESCRIPTOR must be in READY-QUEUE
If PROCESS-STATUS = UNRUNNABLE

then PROCESS-DESCRIPTOR must be in WAIT-QUEUE

PROCESS NAME: DETERMINE QUEUE PRIORITY
PROCESS NUMBER: 2.2.1
PROCESS DESCRIPTION:
Read the highest PRIORITY in the READY-QUEUE
Read the highest PRIORITY in the WAIT-QUEUE blocked
for memory

234

PROCESS NAME: DETERMINE STATUS
PROCESS NUMBER: 2.2.2
PROCESS DESCRIPTION:
If a WAIT-QUEUE PROCESS has the highest of the two priorities

then it is selected
else the highest in the READY-QUEUE is selected

PROCESS NAME: DETERMINE LOCATION
PROCESS NUMBER: 2.2.3
PROCESS DESCRIPTION:
If a WAIT-QUEUE PROCESS was selected

then make a SWAP-IN-REQUEST
If a READY-QUEUE PROCESS was selected

then it is the RUN-PROCESS

PROCESS NAME: SELECT QUEUE ACTIONS
PROCESS NUMBER: 2.3.1
PROCESS DESCRIPTION:
If QUEUE-REQUEST = WAIT-Q

then delete from READY-QUEUE and add to WAIT-QUEUE
If QUEUE-REQUEST = READY-Q

then delete from WAIT-QUEUE and add to READY-QUEUE
If QUEUE-REQUEST = terminate PROCESS

then delete from PROCESS-STRUCTURE

PROCESS NAME: DELETE FROM QUEUE STRUCTURE
PROCESS NUMBER: 2.3.2

PROCESS DESCRIPTION:
If PROCESS-INFO not equal to terminate

then QUEUE = PROCESS-INFO
Delete PROCESS from PROCESS-STRUCTURE

PROCESS NAME: DETERMINE QUEUE ENTRY
PROCESS NUMBER: 2.3.3
PROCESS DESCRIPTION:
If QUEUE contains WAIT-Q

then add to WAIT-QUEUE
IF QUEUE contains READY-Q

then add to READY-QUEUE

235

PROCESS NAME: ADD TO WAIT QUEUE
PROCESS NUMBER: 2.3.4
PROCESS DESCRIPTION:
Examine PROCESS-PRIORITY of PROCESS-ID
Insert in WAIT-QUEUE by priority

PROCESS NAME: ADD TO READY QUEUE
PROCESS NUMBER: 2.3.5
PROCESS DESCRIPTION:

Insert in READY-QUEUE by priority

PROCESS NAME: DETERMINE MEMORY
PROCESS NUMBER: 3.1
PROCESS DESCRIPTION:
Request memory for the process to swap-in
If MEMORY-RESPONSE is negative

then issue a SWAP-OUT-REQUIREMENT
If MEMORY-RESPONSE is positive

then issue a SWAP-APPROVAL

PROCESS NAME: EXECUTE SWAP-IN
PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
Determine location of the process to swap-in

PROCESS NAME: EXECUTE SWAP-OUT
PROCESS NUMBER: 3.3
PROCESS DESCRIPTION:
Determine location of the process to swap-out

236

PROCESS NAME: INITIATE I/O
PROCESS NUMBER: 3.4
PROCESS DESCRIPTION:
Issue I/O-REQUEST to the INPUT/OUTPUT MANAGER

237

DATA DICTIONARY

FOR MEMORY MANAGEMENT

DATA ELEMENT NAME: ACCEPTED-FREE-AREA
ALIASES: NONE
COMPOSITION: ACCEPTED-FREE-AREA = MEMORY-SIZE

- PROCESS-SIZE
SOURCE: COMPARE AREA WITH SIZE (2.2)
DESTINATION: UPDATE FREE AREA TABLE (2.3)
COMMENTS: SELECT FREE AREA LEVEL

DATA FLOW NAME: AREA-PARAMETERS
ALIASES: NONE
COMPOSITION: AREA-PARAMETERS = PROCESS-ID

+ MEMORY-SIZE
+ MEMORY-LOCATION

SOURCE: MATCH ENTRY AND PROCESS (5.1)
DESTINATION: ADJUST FREE SPACE (5.3)

UPDATE MEMORY TABLE (5.2)
COMMENTS: DEALLOCATE MEMORY SPACE LEVEL

DATA FLOW NAME: FREE-AREA-SIZE
ALIASES: NONE
COMPOSITION: FREE-AREA-SIZE = MEMORY-SIZE
SOURCE: EXAMINE FREE AREA (2.1)
DESTINATION: COMPARE AREA WITH SIZE (2.2)
COMMENTS: SELECT FREE AREA LEVEL

DATA FLOW NAME: DEALLOCATE-REQUEST
ALIASES: PROCESS-ID
COMPOSITION: DEALLOCATE-REQUEST = PROCESS-I D
SOURCE: DETERMINE NEED (1)
DESTINATION: DEALLOCATE MEMORY (5)
COMMENTS: MEMORY MANAGEMENT LEVEL

DATA FLOW NAME: MEMORY-BOUNDS
ALIASES: NONE

COMPOSITION: MEMORY-BOUNDS = STARTING-ADDRESS
+ ENDING-ADDRESS

SOURCE: RECORD PROCESS BOUNDS (4)
DESTINATION: MEMORY REQUEST SOURCE
COMMENTS: MEMORY MANAGEMENT LEVEL

238

DATA FLOW NAME: NO-FIT-MESSAGE
ALIASES: NONE
COMPOSITION: NO-FIT-MESSAGE INDICATION OF LACK

OF MEMORY FOR PROCESS-SIZE
SOURCE: COMPARE AREA WITH SIZE (2.2)
DESTINATION: RECORD PROCESS BOUNDS (4)
COMMENTS: SELECT FREE AREA LEVEL

DATA FLOW NAME: PROCESS-BOUNDS
ALIASES: NONE
COMPOSITION: PROCESS-BOUNDS = NO-FIT-MESSAGE

I MEMORY-BOUNDS
SOURCE: SELECT AREA (2)
DESTINATION: RECORD PROCSS BOUNDS (4)
COMMENTS: MEMORY MANAGEMENT LEVEL

DATA ELEMENT NAME: PROCESS-ID
ALIASES: DEALLOCATE-REQUEST
COMPOSITION: PROCESS-ID = UNIQUE ID ASSIGNED BY SYSTEM
SOURCE: DETERMINE NEED (1)
DESTINATION: MATCH ENTRY AND PROCESS (5.1)
COMMENTS: DEALLOCATE MEMORY SPACE LEVEL

DATA FLOW NAME: PROCESS-MAP
ALIASES: NONE
COMPOSITION: PROCESS-MAP = PROCESS-ID

+ MEMORY-LOCATION
+ MEMORY-SIZE

SOURCE: SELECT AREA (2)
DESTINATION: ASSIGN AREA (3)
COMMENTS: MEMORY MANAGEMENT LEVEL

DATA FLOW NAME: PROCESS-NEEDS
ALIASES: NONE
COMPOSITION: PROCESS-NEEDS = DEALLOCATE-REQUEST

I PROCESS-SIZE
SOURCE: SCHEDULER LEVEL
DESTINATION: DETERMINE NEED (1)
COMMENTS: MEMORY MANAGEMENT LEVEL

239

DATA FLOW NAME: PROCESS-SIZE
ALIASES: NONE
COMPOSITION: PROCESS-SIZE = AMOUNT OF MEMORY REQUIRED
SOURCE: DETERMINE NEED (1)
DESTINATION: SELECT AREA (2)
COMMENTS: MEMORY MANAGEMENT LEVEL

2

_t ... 240

FILE DEFINITIONS
FOR MEMORY MANAGER

FILE OR DATABASE NAME: FREE-SPACE-TABLE
ALIASES: NONE
COMPOSITION: FREE-SPACE-TABLE = {MEMORY-SIZE

+ MEMORY-LOCATION
+ MEMORY-STATUS)

ORGANIZATION: TABULAR BY SIZE

COMMENTS: DEALLOCATE MEMORY SPACE LEVEL

FILE OR DATABASE NAME: MEMORY-MAP-TABLE
ALIASES: NONE
COMPOSITION: MEMORY-MAP-TABLE = {PROCESS-ID

+ MEMORY-SIZE
+ MEMORY-LOCATION
+ MEMORY-STATUS)

ORGANIZATION: TABULAR BY PROCESS-ID
COMMENTS: MEMORY MANAGEMENT LEVEL,

DEALLOCATE MEMORY SPACE LEVEL

241

PROCESS DESCRIPTIONS

FOR MEMORY MANAGEMENT

PROCESS NAME: DETERMINE NEED
PROCESS NUMBER: 1
PROCESS DESCRIPTION:
If PROCESS-NEEDS contain MEMORY-SIZE and PROCESS-ID

then MEMORY-SIZE = PROCESS-SIZE
If PROCESS-NEEDS contain only PROCESS-ID

then DEALLOCATE MEMORY of PROCESS-ID

PROCESS NAME: ASSIGN AREA
PROCESS NUMBER: 3
PROCESS DESCRIPTION:
Assign the process an entry in the MEMORY-MAP-TABLE

PROCESS NAME: RECORD PROCESS BOUNDS
PROCESS NUMBER: 4
PROCESS DESCRIPTION:
Write the starting address and ending address to the
PROCESS-DESCRIPTOR of the associated process

PROCESS NAME: EXAMINE FREE AREA
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Select a free area from the FREE-SPACE-TABLE and
determine its size.

PROCESS NAME: COMPARE AREA WITH SIZE
PROCESS NUMBER: 2.2
PROCESS DESCRIPTION:
If PROCESS-SIZE is less than or equal to FREE-AREA-SIZE

then accept the FREE-AREA
else reject the FREE-AREA

242

PROCESS NAME: UPDATE FREE AREA TABLE
PROCESS NUMBER: 2.3
PROCESS DESCRIPTION:
Remove the ACCEPTED-FREE-AREA from the FREE-AREA-TABLE

PROCESS NAME: MATCH ENTRY AND PROCESS
PROCESS NUMBER: 5.1
PROCESS DESCRIPTION:
Search MEMORY-MAP-TABLE for PROCESS-ID
AREA-PARAMETERS = MEMORY-SIZE + MEMORY-LOCATION of entry

PROCESS NAME: UPDATE MEMORY TABLE
PROCESS NUMBER: 5.2
PROCESS DESCRIPTION:
Change MEMORY-STATUS to AVAILABLE
Delete PROCESS-ID entry from MEMORY-MAP-TABLE

PROCESS NAME: ADJUST FREE SPACE
PROCESS NUMBER: 5.3
PROCESS DESCRIPTION:
Add FREE-SPACE to FREE-SPACE-TABLE.
Merge with adjacent areas.

243

DATA DICTIONARY
FOR THE NUCLEUS

DATA ELEMENT NAME: CURRENT-PRIORITY
ALIASES: NONE
COMPOSITION: CURRENT-PRIORITY = INTERRUPT-PRIORITY
SOURCE: DETERMINE PRIORITY (3.3)
DESTINATION: DISABLE LOWER PRIORITIES (3.4)
COMMENTS: INTERRUPT HANDLER LEVEL

CURRENT INTERRUPT EXECUTING

DATA ELEMENT NAME: DISABLE-MESSAGE

ALIASES: NONE
COMPOSITIO]'J: DISABLE-MESSAGE = CURRENT-PRIORITY
SOURCE: DISABLE LOWER PRIORITIES (3.4)

- DESTINATION: PROCESSOR
COMMENTS: INTERRUPT HANDLER LEVEL

DATA ELEMENT NAME: HIGHEST-PRIORITY
ALIASES: NONE
COMPOSITION: HIGHEST-PRIORITY = INTERRUPT-PRIORITY
SOURCE: DETERMINE PRIORITY (3.3)
DESTINATION: DETERMINE INTERRUPT ROUTINE LOCATION (3.5)
COMMENTS: INTERRUPT HANDLER LEVEL

DATA ELEMENT NAME: INTERRUPT-ID
ALIASES: NONE
COMPOSITION: INTERRUPT-ID = INTERRUPT-NUMBER
SOURCE: INTERRUPT SOURCE (SINK)
DESTINATIONt IDENTIFY INTERRUPT SOURCE (3.2)
COMMENTS: INTERUPT HANDLER LEVEL

DATA FLOW NAME: LOCATION
ALIASES: NONE
COMPOSITION: LOCATION = INTERRUPT-ROUTINE-ADDRESS
SOURCE: DETERMINE INTERRUPT ROUTINE LOCATION (3.5)
DESTINATION: SERVICE INTERRUPT (3.6)
COMMENTS: INTERRUPT HANDLER LEVEL

244

DATA FLOW NAME: PROCESS-CONDITIONS
ALIASES: NONE
COMPOSITION: PROCESS-CONDITIONS = PROCESS LOCATION
SOURCE: INTERRUPT ROUTINE
DESTINATION: BLOCK (2.2) OR AWAKEN (2.3)
COMMENTS: INTERPROCESS COMMUNICATION LEVEL

DATA FLOW NAME: PROCESS-DESCRIPTOR
ALIASES: NONE
COMPOSITION: PROCESS-DESCRIPTOR = PROCESS-ID

+ PROCESS-IMAGE
+ MEMORY-BOUNDS
+ USER-ID
+ STATUS

SOURCE: TEST FOR CURRENT PROCESS (1.1)
DESTINATION: UPDATE PROCESSOR STATE (1.2)
COMMENTS: DISPATCH PROCESS LEVEL

DATA FLOW NAME: PROCESS-ENVIRONMENT
ALIASES: PROCESS-IMAGE
COMPOSITION: PROCESS-ENVIRONMENT = PROCESSOR-

REGISTERS + PSW
SOURCE: HANDLE INTERRUPT (2)
DESTINATION: PROCESSOR
COMMENTS: NUCLEUS OVERVIEW LEVEL

DATA FLOW NAME: PROCESS-ID
ALIASES: NONE
COMPOSITION: PROCESS-ID = UNIQUE ID SET BY SYSTEM
SOURCE: TEST FOR CURRENT PROCESS (1.1)
DESTINATION: RECORD PROCESSOR STATE (1.3)
COMMENTS: DISPATCH PROCESS LEVEL

DATA FLOW NAME: PROCESS-STATES
ALIASES: PROCESS-IMAGE
COMPOSITION: PROCESS-STATES = PROCESSOR-REGISTERS

+ PSW
SOURCE:

PROCESSOR

DESTINATION: RECORD PROCESSOR STATES (1.3)
COMMENTS: DISPATCH PROCESS LEVEL

245

DATA FLOW NAME: PROCESS-STATUS
ALIASES: NONE
COMPOSITION: PROCESS-STATUS = RUNNABLE I UNRUNNABLE
SOURCE: BLOCK (2.2) OR AWAKEN (2.3)
DESTINATION: PROCESS-STRUCTURES
COMMENTS: INTERPROCESS COMMUNICATION LEVEL.

RESULTS OF BLOCK OR AWAKEN.

DATA FLOW NAME: PROCESS-STATUS-CHANGE
ALIASES: NONE
COMPOSITION: PROCESS-STATUS-CHANGE = RUNNING

I RUNNABLE I UNRUNNABLE

SOURCE: SERVICE INTERRUPT SERVICE (3.6)
DESTINATION: PROCESS-STRUCTURES
COMMENTS: INTERRUPT HANDLER LEVEL

DATA FLOW NAME: RUNNABLE-PROCESS-STATE
ALIASES: PROCESSOR-STATES
COMPOSITION: SEE ALIASE
SOURCE: UPDATE PROCESSOR STATE (1.2)
DESTINATION: PROCESSOR
COMMENTS: DISPATCH PROCESS LEVEL

24

246

FILE DEFINITIONS
FOR THE NUCLEUS

FILE OR DATABASE NAME: CPU-DESCRIPTOR
ALIASES: NONE
COMPOSITION: CPU-DESCRIPTOR = CURRENT RUNNING

PROCESS
+ POINTER TO HEAD OF
READY-QUEUE

+ POINTER TO HEAD OF
WAIT-QUEUE

ORGANIZATION: TABULAR
COMMENTS: DISPATCH PROCESS LEVEL

FILE OR DATABASE NAME: INTERRUPT-VECTOR-TABLE
ALIASES: NONE
COMPOSITION: INTERRUPT-VECTOR-TABLE =

{ INTERRUPT-NUMBER
+ INTERRUPT-ROUTINE-ADDRESS}

ORGANIZATION: SEQUENTIAL BY INTERRUPT-NUMBER
COMMENTS: INTERRUPT HANDLER LEVEL

FILE OR DATABASE NAME: PROCESSOR-QUEUE
ALIASES: NONE
COMPOSITION: PROCESSOR-QUEUE = READY-QUEUE

+ WAIT-OUEUE
ORGANIZATION: LINKED LISTS
COMMENTS: DISPATCH PROCESS LEVEL

FILE OR DATABASE NAME: PROCESSOR-REGISTERS
ALIASES: NONE
COMPOSITION: PROCESSOR-REGISTERS = PSW

+ GENERAL PURPOSE REGISTERS
ORGANIZATION: TABULAR
COMMENTS: SAVE AND RESTORE CPU LEVEL.

FILE OR DATABASE NAME: PROCESSOR-STACK
ALIASES: NONE
COMPOSITION: PROCESSOR-STACK = CPU STORAGE
ORGANIZATION: LAST-IN-LAST-OUT
COMMENTS: SAVE AND RESTORE CPU LEVEL

247

FILE OR DATABASE NAME: PROCESS-STRUCTURES
ALIASES: NONE
COMPOSITION: PROCESS-STRUCTURES = PROCESSOR-QUEUE

+ CPU-DESCRIPTOR
+ FILE-DESCRIPTORS
+ DEVICE-SERVICE-LIST

ORGANIZATION: LINKED LISTS AND TABULAR
COMMENTS: NUCLEUS OVERVIEW LEVEL

• 24
t1

rt248

PROCESS DESCRIPTIONS
FOR THE NUCLEUS

PROCESS NAME: TEST FOR CURRENT PROCESS
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION:
Compare front of READY-QUEUE to the CURRENT-PROCESS
If the same process

then execute CURRENT-PROCESS
else read the PROCESSOR-ID of the CURRENT-PROCESS

Select the front process in the READY-QUEUE to run.
Read the PROCESS-DESCRIPTOR and change the CURRENT-PROCESS.

PROCESS NAME: UPDATE PROCESSOR STATE
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
Load the PROCESS-STATES into the PROCESSOR-REGISTERS

PROCESS NAME: RECORD PROCESSOR STATE
PROCESS NUMBER: 1.3
PROCESS DESCRIPTION:
Read the PROCESSOR-REGISTERS and record them in the PROCESS-
DESCRIPTOR of PROCESS-ID

PROCESS NAME: LOCK
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
Disable the CPU from any outside interruptions

PROCESS NAME: BLOCK
PROCESS NUMBER: 2.2
PROCESS DESCRIPTION:
Prevent a PROCESS from executing unless a specific condition
is satisfied.

249

PROCESS NAME: AWAKEN
PROCESS NUMBER: 2.3
PROCESS DESCRIPTION:
Remove the effect of the BLOCK process and allow execution.

PROCESS NAME: UNLOCK
PROCESS NUMBER: 2.4
PROCESS DESCRIPTION:
Remove the LOCK process (2.1)

PROCESS NAME: SAVE CPU STATE

PROCESS NUMBER: 3.1
PROCESS DESCRIPTION:
Read the PROCESSOR-REGISTERS and write them to the
PROCESSOR-STACK

PROCESS NAME: IDENTIFY INTERRUPT SOURCE

PROCESS NUMBER: 3.2
PROCESS DESCRIPTION:
Compare the INTERRUPT-ID with interrupt sources to
determine the SOURCE-ID

PROCESS NAME: DETERMINE PRIORITY
PROCESS NUMBER: 3.3
PROCESS DESCRIPTION:

Read the INTERRUPT-PRIORITY of the SOURCE-ID
If the INTERRUPT-PRIORITY of the source is higher than the
current interrupt rountine

then suspend the current interrupt
CURRENT-PRIORITY = higher interrupt priority.

250

PROCESS NAME: DISABLE LOWER PRIORITES
PROCESS NUMBER: 3.4
PROCESS DESCRIPTION:
If interrupt priority is lower or equal to CURRENT-PRIORITY

then ignore interrupt.

PROCESS NAME: DETERMINE INTERRUPT ROUTINE LOCATION
PROCESS NUMBER: 3.5
PROCESS DESCRIPTION:
Match the HIGHEST-PRIORITY with the entry in the INTERRUPT-VECTOR-TABLE. Read the LOCATION of the interrupt routine.

PROCESS NAME: SERVICE INTERRUPT
PROCESS NUMBER: 3.6
PROCESS DESCRIPTION:
Go to the LOCATION of the interrupt routine and execute.

251

Module Structure Charts

This appendex contains the module structure charts

developed in Chapter Five. Techniques used to develop the

charts are from Weinberg's Structured Analysis. A summary

of notation and development can be found in Chapter Five.

45

.1z

2.52

Execute Operating System 254

Execute System Command9....255

Execute Control Command 256

ExecutefHelp Command 257

Execute User Command 258

Execute File Management 259

Execute Open File 260

Allocate File Space 261

Execute Link Files 262

Create File Descriptor 263

Execute Close File 264

Execute Input/Output 265

Initiate Input/Output Request 266

Execute Device Handler 267

Execute Schedule Managememt 268

Create Process 269

Execute Scheduler* . .* 270

Determine Process Status 271

Determine Running Process 272is Enter Processor Queues ~ 273

Swap Process 274

Execute Memory Management 275

Select Free Area 276

Deallocate Memory Space 277

Execute Dispatcher278

Execute Interrupt Handler 279

253

COMMAND~ CoMMAND RESPONSE USER
RESPONCE

COMN REMMAD REPONS

EXECEMUEEECU

COMMAND COMMAND

22

SYSTEM MEN U
CODMMND c

EXECUTE

* SYSTEM

CCOMMAND

AUTHORIZA
IONCO

M D

AUTHORITEDRMEEU
COMMORDZ AUTHORIZATION/MMESSAGE/

AUTHORITYE MENU SSE

2.1 2.2 2.3

255

CONTROLI t RESPONSE
COMMAND

DETERMINE
CONTROL
COMMAND

4.1
INQUIRY

LOG- COMMAND

COMMAND
INQUIRY

LOG-IN LOG-OUT RESPONSE
PROMPT LOG-OUT MESSAGE/ COMMAND

LOG-IN LOG-OUT EXECUTE
USER USER INQUIRY

4.24.3 4.4

1

~256

HELP COMMAND IRESPONSE

DETERMINE
HELP REQUIRED

5.1

/ COMMAND

SYSTEM INFO INFO REQUEST

CEM OMMAND INFO

PROVIDE PROVIDE
SYSTEM I COMMA D

INFO IIINFO
5.2 5.23

' 257

SESSION RSOS
COMMAND RSOS

EXECUTEI
USER

COMMAND OM MADCNDTN

~SSININTERPRETED NIIN

INTERPRET ETERMINERRESNE
COMMANDN

COMMAND 6CCO MAND D

COPROMPT

GET PR OMCOMMAND USER AN
RURMENTS 6.3NDCNDTN

258 AND

FILE F ILE
REQUEST LESCRIPTOR

LOCATE
USER FILE
DIRECTORY

~CLOSE

DIRECTORY REQUEST
LOCATION FILE FILE

DETERMINE EXECUTEE
MASTER OPEN CLOSE

DIRECTORY FILE !FILE
3 4

259

FILE ~ FILE4
COMMAND DESCRIPTOR

OPEN
FILE

LOCATION

FILE LOGICAL

OPENA FIE DEVICE

DETERMINE FILE N IERGT
COMMAND LOCATION

.3.

LOjA PAXAMETER
DIRECTORY

LOATOCAT LINKAEAT

DETERIE CRREATER

LOCATIONO DESIITO

260S PPOVL

NEW FILE J 'STORAGE ERROR

I NEW ACCESS RIGHTS
DETERMINE

FREE BLOCKS

3.3.

SS r261G

LINK APPROVAL

DETERM4INE
USER

DIRECTORY

DIRECTORY/ONRLN

INF

USER WNERDIRECTORY

262

FILE PARAMETERS9

STARTING BLOCKI IEDSRPO

CREATEFILE
DESCRIPTOR

\ CENTRAL FILE
BLOCK

STARTING
STATUS BLOCK

ADDRESS%

EXISTING FILE
BLOCK PARAMETERS

LOCAL BLOCK

AI

READ TEST CREATE CREATE

FILE BLOCK CENTRAL FILE LOCAL FILE CENTRAL FILE

STATUS BLOCK BLOCK 1BLOCK3.8.2 3.8.1 3.8.3

263

CLOSE FILE
REQUEST

CLOSE
FILE

LOCATION OF
CENTRAL FILE BLOCK

CURRENT

ONTSATUCLOSE FILE LOCATI
REQUEST CURRENTAS OF CENTRAL

STATUS FILE BLOCK

DELETE UPDATE DELETE

LOCAL FILE STATUS CENTRAL PILE
BLOCK 4.2 BLOCK

4.1
4.3

CURRENTi-,; STATUS
CENTRAL

STATUS\ FILE BLOCK

WRITE TO
CENTRAL FILE

BLOCK

I

264

I/O REQUEST REQUEST

ERROR MESSAGE
SERVICED

PERFORM
INPUT/OUTPUT

REQUEST
1/0 NOTICE

REQUEST

DEVICE REQUEST REQUEST
PARAMETER/ NOTICE 1 SERVICED

MESSAGE
PHYSICAL ERROR DEVICE
DEVICE MESSAGE PARAMETER

MAP LOGICAL CHECK I/O INITIATE EXECUTE
TO PHYSICAL PARAMETERS REQUEST DEVICE
DEVICE 4 2 HANDLER

1 3

265

RPOrJPFT NOTICE

INITIATE 1/0

4 DEVICE,

PARAMETERS /
BLOCK BLOCKBLC

BLOCK

/

ID R EQU EST
NOTICE

ASSEMBLE NOTIFY ADT
REQUEST DEVICE DVC
BLOCK HAN~DLER SERVICE LIST

2.1 2.22.

266

REQUEST PROCESS
NOTICE NOTIFICATION

EXECUTE
DEVICE-' HANDLER

REO EQ BLOCK

NNOTICE COMPLEi l BLOCK R

REQUEST PCES

INPUT DT BLOCK DATA DAT
DAAID OUTPUT% TRANSLATED

1/2 FROM LIST DATA DATA3.2 3.3 3.4 3.5

267

I/t
REQUEST NEW JOB

MANAGE
PROCE SSES

NEW JOB/ 1/O

/NEW tREQUEST \EUS
PROCESS

ISWAP OUT\
CREATE EXECUTE EXECUTE
PROCESS SCHEDULER MEMORY

* 12 SWAP
3

268

NEW 'INEW
PROCESS JOB

CREATE4 PROCESS

NEW/ NEW

*1NJO PROCESS

JOB TYPE /JOB
*1 9 TYPE

DETERMINE INITIALIZE ASSIGN SCHEDULE

MEMORY PROCESS PRIORITY NEW

BOUNDS 1.2 1.3 PROCESS
1.1 1.4

269RIT

SWAP REQUEST 'E RCS

EXECUTE.1 SCHEDULER

-~NEW PROCESS SA

RUN PROCESSREUSPOCS

PRC'
ON)

270 ONITO

NEW PROCESS1

RUN PROCESS ID PROCESS CONDITION

DETERMINE
PROCESS
STATUS

UNRUNNABLE UNRUNNABLE
PROCESS ID STATUS

NEW PROCESS/ \RUNNABLE STATUS

ID CONDITIONS

DETERMINE! REQUESTI

PROCESS PREEMPTED BLOCKED QUEUE
STATUS PROCESS PROCESS ACTION

1UNRUNNABLE
RUNNABLE RUNNABLE STATUS RUN
PROCESS / STATUS 9PROCESS

ID 1 UNRUNNABLE ID
PROCESS ID

CHANGE ~ CHANGE CAG
STATUS TO{ STATUS TO STATUS TC
RUNNABLE UNRUNNABLE RUNNING

2.1.2 I 2.1.3 2.1.4

~ 1 271

?U

RUNI PROCESS I
SWAP IN REQUEST SWAP OUT REQUIREMENT

DETERMINE

RUNNING

QUEUESTA

PRIORIY N

REQUIREMENT/ PRIORITYQUE

II
DETEMIN DEERMIEI ET2MI2

QUEUE REQUEST

ENTER
PROCESSOR

PROCESS INFO IF

QUE1 UEU QUEUE2.5

INF INF

2.. 21.273

I/O REQUEST

SWAP OUT REQUIREMENT SWAP REQUEST

SWAPPROCESS

SWAP IN 1/0 REQUEST
REQUEST iA IN O

SWAP OUT / .SWAP OUT

REQUIREMENT /AP\ INFAPPOVL/ WA OUT SWA OUSA INF

APPROVAL 1 REQUEST INFO INFO

II DETERMINEEXCT]EEUE[NT4O

r~MEMORY REQUEST
MEMORYIBOUNDS

AVAI2ABLE4MEMORY

)" 2 7 4

PROCESS MEMORY
NEEDS BOUNDS

MANAGE
MEMORY

PROCESS
NEEDS /

PROCESS DEALLOCATE
ASIZE /REQUEST

DEALLOCATE

A REQUEST/

DETERMINE IDEALLOCATE
NE ED MEMORY

PROCESS 5
BOUNDS

PROCESS PROCESS PROCESS
SIZE MAP BOUNDS MEMORY BOUNDS

SELECTI ASSIGN RECORD
AREA AREA PROCESS

23 BOUNDS
4

275

PROCESS IPROCESS
SIZE MAP

SELECT
FREE AREA

PROCESSp1
SIZE NO FIT ACCEPTED

ACCEPTED 4 MESSAGE % FREE AREA
FREE AREA0 d'PROCESS MAP

COMPARE UPDATE
AREA WITH FREE AREA
SIZE TABLE
2.2 2.3

FREE AREA SIZE

EXAMINE
FREE AREA

2.1

276

PROCESS ID

DEALLOCATE
MEMORY SPACE

\AREA
PARAME TERS

PROCESS ID

AREA AREA
PARAMETERS/ PARAMETERS

MATCH UPDATE ADJUST
ENTRY WITH MEMORY FREE
PROCESS TABLE SPACE

5.1 5.2 5.3

277

PROCESS
STATUS

DISPATCH
PROCESS

PROCESS /PROCESS
STATUS \ ID

PROCESS / PROCESS PROCESS
DESCRIPTOR ID DESCRIPTOR

TEST FOR UPDATE RECORD
CURRENT PROCESSOR PROCESSOR
PROCESS STATE STATE

1.1 1.2 1.3

RUNNABLE PROCESSOR

STATES /ST
CPU

REGISTER

2

(

'1.

278

'A0-AIS 614 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFS OH SCHOO--ETC F/G 9/2
DESIGN AND DEVELOPMENT OF A MULTIPROGRAMMING OPERATING SYSTEM F-ETC(U)

I DEC 81 M S ROSS

UNCLASSIFIED AFIT/GCS/EE/S101'4 EDNL4lfflf

4INTERRUPT ID PROCESS STATUS CHANGE

EXECUTE
INTERRUPT

HANDLER

INTERRUPT ID/ XLOCATION

SOURCE ID PROITROCT O CES PRIORIS

INERP INERP

3279

Captain Mitchell S. Ross was born on Febuary 28, 1952

in Stillwater, Oklahoma. In 1970, he graduated concurrently

from Central High School and The Willard-Graff Vocational

Technical School (Electronic Technology) in Springfield,

Missouri. He earned a Bachelor of Science degree at

Southwest Missouri University with a major in Industrial

Technology and minor in Mathematics. Following graduation

he attended the Signal Officer Course at Fort Gordon,

Georgia and was assigned to the llth Signal Brigade, 40th

Signal Battalion, Fort Huachuca, Arizona. From December

1976 to December 1977 he was the Aide-de-camp to the Deputy

Commanding General, Army Communications Command. He was

subsequently assigned to the 86th Signal Battalion as a

A Microwave and Tropospheric Radio Officer. In December 1978,

he became the Commanding Officer of the 19th Signal Company,

Electronic Maintenance and Supply Facility (EMSF) for the

llth Signal Brigade. He entered the Air Force Institute in

* June 1980.

Permanent Address: 2115 Mt. Vernon

Springfield, Missouri

280

SECURITY CLASSIFICATION OF THIS PAGE ("oen DeseEntered),_________________

REPORT DOCUMENTATrION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER jGOVT ACCESS1N NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/81D-14 rN ,. i I If
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

DESIGN AND DEVELOPMENT OF A MS THESIS
MULTIPROGRAMMING OPERATING SYSTEM
FOR SIXTEEN BIT MICROPROCESSORS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(a)

Mitchell S. Ross, Captain, USA

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Air Force Institute of Technology (AFIT) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB, OH 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Institute of Technology (AFIT) December 1981
Wright-Patterson AFB, OH 45433 1I8WMBER OF PAGES

14. MONITORING AGENCY NAME G ADORESS(1I different fIm Controllinj Office) IS. SECURITY CLASS. (of #hl. repot)

UNCLASSIFIED
15a. OECL ASSI F1 CATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thls Report)

Approved for public releasei distribution unlimited

I?. DISTRIBUTION STATEMENT (of the abstract mtered In fBtck 2, It di!Ierent fro Report)

1b. SUPPLEMENTARY NOTESApproved for public releasiaW APR 190.17 Dean for Resejrch and*4
SL Es WOLAV1t Professional Developmen.t

aUa j w for Reseonh and Air Force Institute of Technology (ATC)
• lrs prLLir .. ,.. iMt-PternAB. rp

lb. KErY WORDS (collu on r. ... ,,-kneeamqy mind Iden lily by bloc nr;uwl --

Operating Systems
Timesharing
Man-Machine Interface
Multiprogramming
Interactive Computing

20. ABSTRACT (Coninue an reverse side It necesary mid Identif by block number)

see reverse

D ,AN" 1473 EDITION Of I NOV OIS OBSOLETE

SECURITY CLASSIFICATION OP THIS PAGE (When Data tntereI

SECURITY CLASSIFICATION OF THIS PAGEM(on D te Entieped)

20. Abstract

A timesharing operating system for the Air Force
Institute of Technology Digital Engineering Laboratory
was designed and developed with emphasis on the human
interface. The functional requirements were developed
by a thorough literature search on the user perceptions
of computer operating systems and the justification for
the success of popular systems such as UNIX, TENEX, and
UCSD Pascal. Structured Analysis was used to produce a
structured specification for the hierarchy of the operat-
ing system. The structured specification includes an
operating system shell which allows a flexible user
command structure, a hierarchical file structure,
device independent input/output management, a scheduler
which supports swapping, a general memory management
scheme, and a system nucleus consisting of process
dispatching, interrupt handling and interprocess com-
munications. Weinberg's methodology, which is based
on Yourdon and Constantine's Transform Analysis and
Transaction Analysis Techniques, was used to develop
the software design which consists of a set of module
structure charts. The module structure charts are
supported by data flow diagrams and a data dictionary.

Because of the depth needed to complete such a
project, this first effort is intended to provide a
basis for further expansion and development. Hence,
the design is a broad overall approach aimed at 16-bit
microprocessors and not detailed sufficiently for full
implementation.

- IO

